Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface coverage isotherm

Charge and surface coverage isotherms exhibiting a continuous course (cf. Section 3.3) as well as monotonously decreasing current transients in the UPD range have usually been explained in terms of localized Meads adsorption taking into account lateral interaction between the adsorbed Meads species [3.97-3.99, 3.101, 3.105, 3.174]. [Pg.72]

Interactions between adsorbed species complicate the problem by making the energy of adsorption a function of surface coverage. Isotherms that include this possibility are the logarithmic Temkin isotherm ... [Pg.567]

Thus from an adsorption isotherm and its temperature variation, one can calculate either the differential or the integral entropy of adsorption as a function of surface coverage. The former probably has the greater direct physical meaning, but the latter is the quantity usually first obtained in a statistical thermodynamic adsorption model. [Pg.645]

These various considerations led Pierce, Wiley and Smith in 1949, and independently, Dubinin, to postulate that in very fine pores the mechanism of adsorption is pore filling rather than surface coverage. Thus the plateau of the Type 1 isotherm represents the filling up of the pores with adsorbate by a process similar to but not identical with capillary condensation, rather than a layer-by-layer building up of a film on the pore walls. [Pg.202]

If a Type I isotherm exhibits a nearly constant adsorption at high relative pressure, the micropore volume is given by the amount adsorbed (converted to a liquid volume) in the plateau region, since the mesopore volume and the external surface are both relatively small. In the more usual case where the Type I isotherm has a finite slope at high relative pressures, both the external area and the micropore volume can be evaluated by the a,-method provided that a standard isotherm on a suitable non-porous reference solid is available. Alternatively, the nonane pre-adsorption method may be used in appropriate cases to separate the processes of micropore filling and surface coverage. At present, however, there is no reliable procedure for the computation of micropore size distribution from a single isotherm but if the size extends down to micropores of molecular dimensions, adsorptive molecules of selected size can be employed as molecular probes. [Pg.286]

However, it is not practical to set the gas temperature in steady state without equally setting the temperature of the surface and bulk phases hounding the gas. Consideration of the response of the system as a vacuum environment can then provide a sufftciendy precise prediction of the pressure P and the surface coverage 9 at temperature Tfor molecules of a known species in a known state on a known surface. For example, an isotherm is estabhshed between the surface of the condensed and the gaseous phases, depending, eg, on the heat of desorption. For submonolayer coverage on a... [Pg.366]

A MC study of adsorption of living polymers [28] at hard walls has been carried out in a grand canonical ensemble for semiflexible o- 0 polymer chains and adsorbing interaction e < 0 at the walls of a box of size C. A number of thermodynamic quantities, such as internal energy (per lattice site) U, bulk density (f), surface coverage (the fraction of the wall that is directly covered with segments) 9, specific heat C = C /[k T ]) U ) — U) ), bulk isothermal compressibility... [Pg.532]

In order to discuss the nature of the interaction between an adsorbed molecule and a surface it is important that the surface coverage be less than one monolayer since in multimolecular adsorption and capillary condensation the spectrum of the adsorbate molecule perturbed by interaction with other adsorbate molecules may mask the spectrum of the adsorbate molecule perturbed by interaction with the adsorbent. Surface coverages may be determined by obtaining an adsorption isotherm with the adsorbate... [Pg.294]

Henry Isotherm In the simplest case, the degree of surface coverage is proportional to the bulk concentration ... [Pg.158]

An analogous law was established in 1803 by W. Henry for the solubilities of gases in water hence, this expression is called the Henry isotherm. The adsorption coefficient B (units dmVmol) depends on the heat of adsorption B = B° e,xp(q RT). The Henry isotherm is valid for low surface coverages (e.g., at 9 < 0.1). [Pg.158]

Often, mnltistep reactions are enconntered where a reactant j first becomes adsorbed on the electrode, then is converted electrochemically (or chemically) to a desorbing prodnct. We shall consider the case where the electrochemical step involving adsorbed particles is rate determining. With a homogeneons electrode surface and without interaction forces between the adsorbed particles [i.e., in conditions when the Langmuir isotherm (10.14) can be apphed], the assumption can be made that the rate of this step is proportional not to the bulk concentration Cy j but to the surface concentration Aj or to the degree of surface coverage 0 hence. [Pg.248]

However, with an inhomogeneous electrode surface and adsorption energies that are different at different sites, the reaction rate constant and the related parameter will also assume different values for different sites. In this case the idea that the reaction rate might be proportional to surface concentration is no longer correct. It was shown by M. Temkin that when the logarithmic adsorption isotherm (10.15) is obeyed, the reaction rate will be an exponential function of the degree of surface coverage by the reactant ... [Pg.248]

The adsorption free energy and other parameters may be determined, provided that a proper adsorption isotherm is identified and is fitted to experimental data. However, it is usually difficult to unequivocally choose an appropriate isotherm an experimental isotherm may well be fitted to a multitude of theoretical isotherms having several adjustable parameters. If the adsorption isotherm at a very small surface coverage is accessible experimentally, the adsorption free energy can be determined from the limiting slope of the isotherm, as all isotherms reduce to Henry s law when 6 0 ... [Pg.124]

The SH signal directly scales as the square of the surface concentration of the optically active compounds, as deduced from Eqs. (3), (4), and (9). Hence, the SHG technique can be used as a determination of the surface coverage. Unfortunately, it is very difficult to obtain an absolute calibration of the SH intensity and therefore to determine the absolute number for the surface density of molecules at the interface. This determination also entails the separate measurement of the hyperpolarizability tensor jS,-, another difficult task because of local fields effects as the coverage increases [53]. However, with a proper normalization of the SH intensity with the one obtained at full monolayer coverage, the adsorption isotherm can still be extracted through the square root of the SH intensity. Such a procedure has been followed at the polarized water-DCE interface, for example, see Fig. 3 in the case of 2-( -octadecylamino)-naphthalene-6-sulfonate (ONS) [54]. The surface coverage 6 takes the form ... [Pg.144]

Conventional bulk measurements of adsorption are performed by determining the amount of gas adsorbed at equilibrium as a function of pressure, at a constant temperature [23-25], These bulk adsorption isotherms are commonly analyzed using a kinetic theory for multilayer adsorption developed in 1938 by Brunauer, Emmett and Teller (the BET Theory) [23]. BET adsorption isotherms are a common material science technique for surface area analysis of porous solids, and also permit calculation of adsorption energy and fractional surface coverage. While more advanced analysis methods, such as Density Functional Theory, have been developed in recent years, BET remains a mainstay of material science, and is the recommended method for the experimental measurement of pore surface area. This is largely due to the clear physical meaning of its principal assumptions, and its ability to handle the primary effects of adsorbate-adsorbate and adsorbate-substrate interactions. [Pg.305]

The measured NMR signal amplitude is directly proportional to the mass of adsorbate present, and the NMR signal versus pressure (measured at a fixed temperature) is then equivalent to the adsorption isotherm (mass of adsorbate versus pressure) [24-25]. As in conventional BET measurements, this assumes that the proportion of fluid in the adsorbed phase is significantly higher than the gaseous phase. It is therefore possible to correlate each relaxation time measurement with the calculated number of molecular layers of adsorbate, N (where N = 1 is monolayer coverage), also known as fractional surface coverage. [Pg.313]

Although TPD is a versatile and useful technique widely available within the surface-science community, it does have some limitations. For one, because the experiments are carried out under vacuum, they can only probe irreversible reactions no readsorption of the desorbing products is possible. In addition, as the temperature is ramped during detection, the surface temperature and the reaction rates become coupled in a way difficult to separate or control. Of particular importance here is the fact that as the reactions proceed and the products desorb, the surface coverages decrease, so the rates at higher temperatures correspond to the new lower surface concentrations. In order to overcome this problem, isothermal kinetic experiments have been carried out using molecular beams [22,23],... [Pg.72]

A plot of v versus PA is of the same form as the Type I adsorption isotherm. At low values of PA the term KPA is small compared to unity, and the amount adsorbed will be linear in pressure. At high pressures the term KPA is large compared to unity, and the surface coverage is nearly complete. In this case v will approach vm. [Pg.175]


See other pages where Surface coverage isotherm is mentioned: [Pg.404]    [Pg.87]    [Pg.266]    [Pg.276]    [Pg.53]    [Pg.286]    [Pg.288]    [Pg.306]    [Pg.247]    [Pg.251]    [Pg.257]    [Pg.1186]    [Pg.143]    [Pg.387]    [Pg.312]    [Pg.72]    [Pg.72]    [Pg.76]    [Pg.86]    [Pg.117]    [Pg.233]    [Pg.674]    [Pg.14]    [Pg.145]    [Pg.438]    [Pg.105]    [Pg.611]    [Pg.14]    [Pg.238]    [Pg.78]    [Pg.463]    [Pg.413]    [Pg.31]   
See also in sourсe #XX -- [ Pg.52 , Pg.60 , Pg.72 ]




SEARCH



© 2024 chempedia.info