Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface chemistry electrochemical

All these techniques have provided a unanimous answer to the above questions. A combination of the results of any two or three of them would have sufficed to put together the puzzle. But each one of them has something new to offer, some new facet of the surface chemistry to reveal. So each of them will be discussed in this chapter in a sequence which in many cases coincides with the chronological order in which they were employed in order to solve the puzzle and understand the origin of electrochemical promotion. [Pg.190]

Equations (7.11) and (7.12) provide a firm basis for understanding the effect of Electrochemical Promotion but also provide an additional, surface chemistry, meaning to the emf of solid electrolyte cells in addition to its usual Nerstian one. [Pg.355]

In the first chapter, on electrochemical atomic layer epitaxy, Stickney provides a review of experimental methodology and current accomplishments in the electrodeposition of compound semiconductors. The experimental procedures and detailed fundamental background associated with layer-by-layer assembly are summarized for various compounds. The surface chemistry associated with the electrochemical reactions that are used to form the layers is discussed, along with challenges and issues associated with device formation by this method. [Pg.356]

Ultrahigh vacuum surface spectroscopies can provide far greater breadth and depth of information about surface properties than can yet be achieved using in situ spectroscopies at the aqueous/metaI interface. Application of the vacuum techniques to electrochemical interfaces is thus desirable, but has been plagued by questions of the relevance of the emersed, evacuated surfaces examined to the real electrochemical interfaces. This concern is accentuated by surface scientists observations that in UHV no molecular water remains on well-defined surfaces at room temperature and above (1). Emersion and evacuation at room temperature may or may not produce significant changes in electrochemical interfaces, depending.on whether or not water plays a major role in the surface chemistry. [Pg.65]

L/evelopment of sophisticated surface analytical techniques over the past two decades has revived interest in the study of phenomena that occur at the electrode-solution interface. As a consequence of this renewed activity, electrochemical surface science is experiencing a rapid growth in empirical information. The symposium on which this book was based brought together established and up-and-coming researchers from the three interrelated disciplines of electrochemistry, surface science, and metal-cluster chemistry to help provide a better focus on the current status and future directions of research in electrochemistry. The symposium was part of the continuing series on Photochemical and Electrochemical Surface Science sponsored by the Division of Colloid and Surface Chemistry of the American Chemical Society. [Pg.558]

The high reactivity of copper superconductors is a large obstacle to their practical application. Many spectroscopic studies have been devised to investigate the surface chemistry of these materials, but electrochemical investigations can also be important. [Pg.508]

Au is an excellent electrode material. It is inert in most electrochemical environments, and its surface chemistry is moderately well understood. It is not, however, the substrate of choice for the epitaxial formation of most compounds. One major problem with Au is that it is not well lattice matched with the compounds being deposited. There are cases where fortuitous lattice matches are found, such as with CdSe on Au(lll), where the Vs times the lattice constant of CdSe match up with three times the Au (Fig. 63B) [115,125]. However, there is still a 0.6% mismatch. A second problem has to do with formation of a compound on an elemental substrate (Fig. 65) [384-387]. Two types of problems are depicted in Fig. 65. In Fig. 65A the first element incompletely covers the surface, so that when an atomic layer of the second element is deposited, antiphase boundaries result on the surface between the domains. These boundaries may then propagate as the deposit grows. In Fig. 65b the presence of an atomically high step in the substrate is seen to also promote the formation of antiphase boundaries. The first atomic layer is seen to be complete in this case, but when an atomic layer of the second element is deposited on top, a boundary forms at the step edge. Both of the scenarios in Fig. 65 are avoided by use of a compound substrate. [Pg.180]

The problem with all three of the above scenarios is that they require an understanding of the surface chemistry of compound semiconductor in aqueous solutions. Much more is known about the surface chemistry and reactivity of Au in aqueous solutions. A prerequisite, then, to the use of a compound semiconductor as a substrate for compound electrodeposition is to gain a better understanding of the substrate s reactivity under electro-chemically relevant conditions. Our initial studies of compound reactivity in electrochemical environments involved CdTe single crystals [391]. The electrochemistry of CdTe is reasonably well understood from electrodeposition studies (Table 1), and single crystals are commercially available. [Pg.182]

In general, the electrochemical performance of carbon materials is basically determined by the electronic properties, and given its interfacial character, by the surface structure and surface chemistry (i.e. surface terminal functional groups or adsorption processes) [1,2]. Such features will affect the electrode kinetics, potential limits, background currents and the interaction with molecules in solution [2]. From the point of view of electroanalysis, the remarkable benefits of CNT-modified electrodes have been widely praised, including low detection limits, increased sensitivity, decreased overpotentials and resistance to surface fouling [5, 9, 11, 17]. [Pg.123]

Figure 54. Peculiar surface chemistry of BOB anion on graphitic anode material XPS C Is spectra for a graphitic anode surface cycled in LiBOB- and LiPF6-based electrolytes. The peaks were resolved into three major contributions representing (1) hydrocarbon at 284.5 eV, (2) oligo-ether linkages at 286.5 eV, and (3) lithium alkyl carbonates at 289.37 eV, respectively. (Reproduced with permission from ref 489 (Figure 3). Copyright 2003 The Electrochemical Society.)... Figure 54. Peculiar surface chemistry of BOB anion on graphitic anode material XPS C Is spectra for a graphitic anode surface cycled in LiBOB- and LiPF6-based electrolytes. The peaks were resolved into three major contributions representing (1) hydrocarbon at 284.5 eV, (2) oligo-ether linkages at 286.5 eV, and (3) lithium alkyl carbonates at 289.37 eV, respectively. (Reproduced with permission from ref 489 (Figure 3). Copyright 2003 The Electrochemical Society.)...
Most readers may not appreciate the impact of electrochemistry and/or electrochemical deposition techniques in medicine. In this chapter we discuss these topics as they relate to medical devices. Emphasis is placed on the often overlooked materials science and surface chemistry aspects of medical devices rather than on the topics, described extensively in the literature, of electrochemical sensors in medical apphca-tions. This chapter is intended to provide the reader with a view of the role in medical devices of electrochemistry in general and electrochemical deposition in particular. It is also intended that the reader gain an appreciation of the future potential role of electrochemistry in devices, particularly in the creation of biomimetic (i.e., biology mimicking) medical devices. [Pg.345]

The big advantage of making ex situ measurements is that they allow the application of methods used in surface chemistry when no solution is present. Some of these ex situ methods (LEED or XPS) are described in Chapter 6. In electrochemical situations in which the critical questions concern, for example, passivation of metals involving oxides or sulfide films, there is no accompanying disadvantage in the use of these well-developed and accurate methods. [Pg.429]

There are numerous applications that depend on chemically reacting flow in a channel, many of which can be represented accurately using boundary-layer approximations. One important set of applications is chemical vapor deposition in a channel reactor (e.g., Figs. 1.5, 5.1, or 5.6), where both gas-phase and surface chemistry are usually important. Fuel cells often have channels that distribute the fuel and air to the electrochemically active surfaces (e.g., Fig. 1.6). While the flow rates and channel dimensions may be sufficiently small to justify plug-flow models, large systems may require boundary-layer models to represent spatial variations across the channel width. A great variety of catalyst systems use... [Pg.719]


See other pages where Surface chemistry electrochemical is mentioned: [Pg.283]    [Pg.189]    [Pg.562]    [Pg.68]    [Pg.163]    [Pg.164]    [Pg.267]    [Pg.550]    [Pg.3]    [Pg.61]    [Pg.92]    [Pg.72]    [Pg.300]    [Pg.143]    [Pg.321]    [Pg.146]    [Pg.117]    [Pg.136]    [Pg.161]    [Pg.65]    [Pg.100]    [Pg.113]    [Pg.560]    [Pg.348]    [Pg.10]    [Pg.161]    [Pg.204]    [Pg.247]    [Pg.160]    [Pg.10]    [Pg.440]    [Pg.7]    [Pg.88]    [Pg.408]    [Pg.445]    [Pg.870]    [Pg.103]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Electrochemical surface

Surface chemistry

© 2024 chempedia.info