Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface adsorption layer, molecular

Rebinder (48) investigated the effect of the surface (adsorption) layers on the properties of colloidal systems. When the lyophobic dispersion systems are stable, the structural-mechanical stabilization occurs where the protecting layers of the micelle-forming surface-active agents or high-molecular compounds are formed at the interface boundary. [Pg.606]

In preceding chapters, it was emphasized that filled polymers and pol5nner alloys are non-equilibrium systems, due to the formation of the surface (adsorption) layers at the interface which are not in the state of thermodynamic equilibrium or formed due to incomplete phase separation. Reduction of molecular mobility in the boundary layers and development of less dense packing in boundary layers, in terms of thermodynamics, are indicative of transition of the system into a state of less equilibrium. [Pg.381]

According to the concepts, given in the paper [7], a significant difference between the values of yield stress of equiconcentrated dispersions of mono- and polydisperse polymers and the effect of molecular weight of monodisperse polymers on the value of yield stress is connected with the specific adsorption on the surface of filler particles of shorter molecules, so that for polydisperse polymers (irrespective of their average molecular weight) this is the layer of the same molecules. At the same time, upon a transition to a number of monodisperse polymers, properties of the adsorption layer become different. [Pg.79]

The situation becomes most complicated in multicomponent systems, for example, if we speak about filling of plasticized polymers and solutions. The viscosity of a dispersion medium may vary here due to different reasons, namely a change in the nature of the solvent, concentration of the solution, molecular weight of the polymer. Naturally, here the interaction between the liquid and the filler changes, for one, a distinct adsorption layer, which modifies the surface and hence the activity (net-formation ability) of the filler, arises. Therefore in such multicomponent systems in the general case we can hardly expect universal values of yield stress, depending only on the concentration of the filler. Experimental data also confirm this conclusion [13],... [Pg.80]

The importance of surface characterization in molecular architecture chemistry and engineering is obvious. Solid surfaces are becoming essential building blocks for constructing molecular architectures, as demonstrated in self-assembled monolayer formation [6] and alternate layer-by-layer adsorption [7]. Surface-induced structuring of liqnids is also well-known [8,9], which has implications for micro- and nano-technologies (i.e., liqnid crystal displays and micromachines). The virtue of the force measurement has been demonstrated, for example, in our report on novel molecular architectures (alcohol clusters) at solid-liquid interfaces [10]. [Pg.1]

To dissociate molecules in an adsorbed layer of oxide, a spillover (photospillover) phenomenon can be used with prior activation of the surface of zinc oxide by particles (clusters) of Pt, Pd, Ni, etc. In the course of adsorption of molecular gases (especially H2, O2) or more complex molecules these particles emit (generate) active particles on the surface of substrate [12], which are capable, as we have already noted, to affect considerably the impurity conductivity even at minor concentrations. Thus, the semiconductor oxide activated by cluster particles of transition metals plays a double role of both activator and analyzer (sensor). The latter conclusion is proved by a large number of papers discussed in detail in review [13]. The papers cited maintain that the particles formed during the process of activation are fairly active as to their influence on the electrical properties of sensors made of semiconductor oxides in the form of thin sintered films. [Pg.177]

With progress of adsorption, the molecular order in the adsorbed layer gradually grows. The chain entanglements, however, hinder the development of order, and cause the persistent amorphous overlayers. At low temperatures, the molecule does not completely spread over the surface leaving a large... [Pg.56]

Various possible steps are involved in the transfer of an adsorbate to the adsorption layer. Transport to the surface by convection or molecular diffusion, attachment to the surface, surface diffusion, dehydration, formation of a bond with the surface constituents. [Pg.97]

Thus, the time that is necessary to attain a certain coverage, 6, or the time necessary to cover the surface completely (9 = 1) is inversely proportional to the square of the bulk concentration (cf. Fig. 4.10b). Assuming molecular diffusion only, 8 is of the order of 2 minutes for a concentration of 10 5 M adsorbate when the diffusion coefficient D is 10 5 cm2 s1 and rmax = 4 1010 mol cm 2 1). Considering that transport to the surface is usually by turbulent diffusion, such a calculation illustrates that the formation of an adsorption layer is relatively rapid at concentrations above 10 6 M. But it can become slow at concentrations lower than 10 6 M. [Pg.104]

Fig. 4.8 compares data on the adsorption of lauric acid (C12) and caprylic acid (Cs) at a hydrophobic surface (mercury) as a function of the total bulk concentration for different pH-values. As is to be expected the molecular species becomes adsorbed at much lower concentrations than the carboxylate anions. The latter cannot penetrate into the adsorption layer without being accompanied by positively charged counterions (Na+). As was shown in Fig. 4.4, the adsorption data of pH = 4 can be plotted in the form of a Frumkin (FFG) equation. Fig. 4.9 compares the adsorption of fatty acids on a hydrophobic model surface (Hg) with that of the adsorption on Y-AI2O3. [Pg.107]

Figure 5-11 shows a simple model of the compact double layer on metal electrodes. The electrode interface adsorbs water molecules to form the first mono-molecular adsorption layer about 0.2 nm thick next, the second adsorption layer is formed consisting of water molecules and hydrated ions these two layers constitute a compact electric double layer about 0.3 to 0.5 nm thick. Since adsorbed water molecules in the compact layer are partially bound with the electrode interface, the permittivity of the compact layer becomes smaller than that of free water molecules in aqueous solution, being in the range from 5 to 6 compared with 80 of bulk water in the relative scale of dielectric constant. In general, water molecules are adsorbed as monomers on the surface of metals on which the affinity for adsorption of water is great (e.g. d-metals) whereas, water molecules are adsorbed as clusters in addition to monomers on the surface of metals on which the affinity for adsorption of water is relatively small (e.g. sp-metals). [Pg.132]

Adsorbate Molecular Orientation at Electrode Surface. Adsorption of some molecules from solution produces an oriented adsorbed layer. For example, nicotinic acid (NA, or 3-pyridinecarboxylic acid, niacin, or vitamin B3) is attached to a Pt(lll) surface primarily or even exclusively through the N atom with the ring in a (nearly) vertical orientation (12) (Fig. 10.5a). [Pg.181]

The deviations from the Szyszkowski-Langmuir adsorption theory have led to the proposal of a munber of models for the equihbrium adsorption of surfactants at the gas-Uquid interface. The aim of this paper is to critically analyze the theories and assess their applicabihty to the adsorption of both ionic and nonionic surfactants at the gas-hquid interface. The thermodynamic approach of Butler [14] and the Lucassen-Reynders dividing surface [15] will be used to describe the adsorption layer state and adsorption isotherm as a function of partial molecular area for adsorbed nonionic surfactants. The traditional approach with the Gibbs dividing surface and Gibbs adsorption isotherm, and the Gouy-Chapman electrical double layer electrostatics will be used to describe the adsorption of ionic surfactants and ionic-nonionic surfactant mixtures. The fimdamental modeling of the adsorption processes and the molecular interactions in the adsorption layers will be developed to predict the parameters of the proposed models and improve the adsorption models for ionic surfactants. Finally, experimental data for surface tension will be used to validate the proposed adsorption models. [Pg.27]

The effect of alkyl alcohol on the surface adsorption and micellization of FC surfactant is noticeably different from HC surfactant. The molecular interactions between ROH and C7pNa in the surface layer are shown to be weaker (Smaler l jl-value) as compared with ROH-C, SNa system. [Pg.182]

At present it is well established that the existence of the phase border between a polymer and any solid leads to the appearance of different types of micro- and macroheterogeneities at the molecular, supermolecular, and chemical levels78. It is established that, due to adsorption interaction at the interface, an essential decrease in molecular mobility takes place as a result of which the glass temperature of such systems increases79. At the same time, due to retardation of the relaxation processes in the surface layers, some loosening of packing takes place, whereas in pure adsorption layers some increase in density is observed80. ... [Pg.91]

In composite systems, 2H NMR is particularly suited to investigate interfacial properties. Indeed, isolated nuclei are observed, which potentially allows spatially selective information to be obtained. It has been used to investigate polymer chain mobility at the polymer-filler interface, mainly in filled silicon (in particular PDMS) networks. The chain mobility differs considerably at the polymer-filler interface, and this may be interpreted in terms of an adsorbed polymer layer at the filler surface. T1 relaxation measurements allowed to determine the fraction of chain units involved in the adsorption layer, or equivalently, the thickness of the layer [75, 76, 77]. The molecular mobility and the thickness of the adsorption layer are very sensitive to the type of filler surface [78]. [Pg.584]

Fig. 11. (A) Force normalised by radius as a function of surface separation between mica surfaces in 0.01 wt.% acetic acid solution (pH 3.8). The arrow indicates a jump from a force barrier into molecular contact. (B) Forces between mica surfaces coated with chitosan across 0.01 wt.% acetic acid solution (pH 3.8). Two sets of measurements are shown. Filled and open symbols represent the forces measured on approach and separation, respectively, after 24 h of adsorption. The crosses represent the forces measured at pH 3.8 after the cycle of exposing chitosan adsorption layers for solutions of increasing alkalinity and measuring forces at pH 4.9, 6.2 and 9.1. The solid lines represent theoretically calculated DLVO forces. Redrawn with permission from Ref. [132]. 1992, American Chemical Society. Fig. 11. (A) Force normalised by radius as a function of surface separation between mica surfaces in 0.01 wt.% acetic acid solution (pH 3.8). The arrow indicates a jump from a force barrier into molecular contact. (B) Forces between mica surfaces coated with chitosan across 0.01 wt.% acetic acid solution (pH 3.8). Two sets of measurements are shown. Filled and open symbols represent the forces measured on approach and separation, respectively, after 24 h of adsorption. The crosses represent the forces measured at pH 3.8 after the cycle of exposing chitosan adsorption layers for solutions of increasing alkalinity and measuring forces at pH 4.9, 6.2 and 9.1. The solid lines represent theoretically calculated DLVO forces. Redrawn with permission from Ref. [132]. 1992, American Chemical Society.

See other pages where Surface adsorption layer, molecular is mentioned: [Pg.179]    [Pg.339]    [Pg.786]    [Pg.344]    [Pg.142]    [Pg.457]    [Pg.72]    [Pg.63]    [Pg.132]    [Pg.411]    [Pg.261]    [Pg.244]    [Pg.11]    [Pg.203]    [Pg.261]    [Pg.26]    [Pg.48]    [Pg.53]    [Pg.179]    [Pg.180]    [Pg.191]    [Pg.119]    [Pg.47]    [Pg.14]    [Pg.193]    [Pg.344]    [Pg.423]    [Pg.136]    [Pg.208]    [Pg.366]    [Pg.7]   


SEARCH



3, molecular adsorption

Adsorption layer

Layered surfaces

Molecular layering

Molecular surface

Surface adsorption layer, molecular interaction

Surface layers

© 2024 chempedia.info