Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface Acoustic Wave SAW Devices

In order to satisfy the stress-free boundary condition, coupled compressional and shear waves propagate together in a SAW such that surface traction forces are zero (i.e., T y = 0, where y is normal to the device surface). The generalized surface acoustic wave, propagating in the z-direction, has a displacement profile u(y) that varies with depth y into the crystal as [Pg.70]

The sensitivity of SAW devices to surface perturbations is dependent upon the wave amplitude at the surface. The wave amplitude can be rqxesented by the surface particle velocities v o, Vyo, and v o in the x-, y-, and z-directions, respectively. These are listed in Table 3.1 (page 74) for several differrait substrate materials. [Pg.72]

For propagation in an isotropic medium or along a pure-mode direction of a crystal (e.g., a plane of symmetry). Equation 3.38 reduces to a Rayleigh wave, characterized by having no transverse component Ux = 0. Since Uy and Uz are 90° out of phase, the particles move in an elliptical orbit in the sagittal plane die surface motion resembles that of the ocean under the influence of a passing wave. [Pg.72]

The presence of the surface-normal displacement component makes the SAW poorly suited for liquid sensing applications. When the SAW medium is am-tacted by a liquid, this component generates compressional waves in the liquid the power thus dissipated leads to excessive attenuation of the SAW. [Pg.72]


A chemical microsensor can be defined as an extremely small device that detects components in gases or Hquids (52—55). Ideally, such a sensor generates a response which either varies with the nature or concentration of the material or is reversible for repeated cycles of exposure. Of the many types of microsensors that have been described (56), three are the most prominent the chemiresistor, the bulk-wave piezoelectric quartz crystal sensor, and the surface acoustic wave (saw) device (57). [Pg.396]

Barrier layers for Cu metallization in surface acoustic wave (SAW) devices, which are increasingly used in the information technique and telecommunications industry, have been investigated by SIMS depth profiling in comparison to AES (Auger Electron Spectrometry).125 Development trends in SAW devices focus on smaller structures, higher input power or higher frequency. Two Cu metallization systems (of 150 nm thickness) on a LiNb03 substrate with different barrier layers ... [Pg.285]

Mercury binding leads to an increase of mass of the gold layer which can be detected by electro-acoustic transducers based on quartz microbalance (QMB the abbreviation QCM = quartz crystal microbalance is also widely used), surface acoustic waves (SAW)—devices [20] or microcantilevers [21,22], Adsorption of mercury vapour increases resonance frequency of shear vibrations of piezoelectric quartz crystals (Fig. 12.2). This process can be described by Sauerbrey equation [23]. For typical AT-cut quartz, this equation is... [Pg.238]

The simple piezoelectric mass detection systems and the more sensitive surface acoustic wave (SAW) devices operate well in a dry or constant humidity gaseous environment (26,27), but they suffer from loss of signal in aqueous media. In the former case, this is largely a non specific response to water at the surface, and in the latter case it is associated with serious loss of the surface Rayleigh wave to the bulk solution. [Pg.15]

There are several applications of ZnO that are due to its excellent piezoelectric properties [28,164]. Examples are surface-acoustic wave (SAW) devices and piezoelectric sensors [28,165-167]. Typically, SAW devices are used as band pass filters in the tele-communications industry, primarily in mobile phones and base stations. Emerging field for SAW devices are sensors in automotive applications (torque and pressure sensors), medical applications (chemical sensors), and other industrial applications (vapor, humidity, temperature, and mass sensors). Advantages of acoustic wave sensors are low costs, ruggedness, and a high sensitivity. Some sensors can even be interrogated wirelessly, i.e., such sensors do not require a power source. [Pg.27]

The addition of mass provides the means of transduction for many chemical sensors, including surface acoustic wave (SAW) devices, quartz crystal microbalances (QCM), and microcantilevers. In all these devices, the mass addition either perturbs the vibration, oscillations, or deflection within the transducer. The mode of transduction in an optical interferometer can also be linked to mass addition the sensor s response is altered by refractive index changes in the material being monitored. It is possible that this change can be elicited solely from refractive index changes without the addition of mass, although in sensing a particular... [Pg.96]

Devices based on piezoelectric crystals, which allow transduction between electrical and acoustic energies, have been constructed in a number of conrigurations for sensor applications and materials characterization. This cluqtter examines those devices most commonly utilized for sensing a( licatithickness-shear mode (TSM) resonator, the surface acoustic wave (SAW) device, the acoustic plate mode (APM) device, and the flexural plate wave (FPW) device. Each of these devices, shown schematically in Figure 3.1, uses a unique acoustic mode. [Pg.36]

ZnO is a wide band gap semiconductor, which is used for various applications. Based on textured ZnO films one can build highly effective piezo field emitters. On the other hand ZnO is a very effective electron-excited phosphor. ZnO films easily withstand electron fluence more than 1 W/cm. ZnO films doped with Al, Ga, or In have a low resistivity of about 10 " Qcm and a high transparency of about 90%. This is sufficient for applications as a front contact in solar cells, liquid crystal displays etc. Dielectric ZnO films have a high electromechanical coupling factor that allow using ZnO in various surface acoustic wave (SAW) devices such as delay lines, delay-line filters, resonators, transducers and SAW convolvers. [Pg.59]

Another state-of-the-art detection system contains a surface acoustic wave (SAW) device, which is based on a piezoelectric crystal whose resonant frequency is sensitive to tiny changes in its mass—it can sense a change of 10-1° g/cm2. In one use of this device as a detector it was coated with a thin film of zeolite, a silicate mineral. Zeolite has intricate passages of a very uniform size. Thus it can act as a molecular sieve, allowing only molecules of a certain size to pass through onto the detector, where their accumulation changes the mass and therefore alters the detector frequency. This sensor has been used to detect amounts of methyl alcohol (CH3OH) as low as 10 9 g. [Pg.117]

Another application of diamond films, which actually is in commercial use already, has been presented with the surface acoustic wave (SAW) devices. Their... [Pg.445]

The most commonly known oscillator sensors are bulk acoustic wave (BAW) and surface acoustic wave (SAW) devices. The BAW devices operate according to the Sauerbrey principle that very thin films on AT-cut crystals can be treated as equivalent mass changes of the crystal. The SAW devices can operate either on the Rayleigh wave propagation principle at solid thin-film boundaries [3] or as bulk wave devices [4]. [Pg.481]


See other pages where Surface Acoustic Wave SAW Devices is mentioned: [Pg.714]    [Pg.396]    [Pg.63]    [Pg.77]    [Pg.13]    [Pg.61]    [Pg.70]    [Pg.71]    [Pg.73]    [Pg.75]    [Pg.77]    [Pg.81]    [Pg.83]    [Pg.85]    [Pg.87]    [Pg.89]    [Pg.91]    [Pg.93]    [Pg.95]    [Pg.97]    [Pg.383]    [Pg.426]    [Pg.817]    [Pg.310]    [Pg.517]    [Pg.530]    [Pg.531]    [Pg.532]    [Pg.3233]    [Pg.4]    [Pg.148]    [Pg.396]    [Pg.75]   


SEARCH



Acoustic devices

Acoustic wave devices

SAW devices

Saw, sawing

Sawing

Surface acoustic wave devices

Surface acoustic waves

Surface waves

© 2024 chempedia.info