Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supported liquid membrane three-phase

In the past decade, several novel solvent-based microextraction techniques have been developed and applied to environmental and biological analysis. Notable approaches are single-drop microextraction,147 small volume extraction in levitated drops,148 flow injection extraction,149 150 and microporous membrane- or supported liquid membrane-based two- or three-phase microextraction.125 151-153 The two- and three-phase microextraction techniques utilizing supported liquid membranes deposited in the pores of hollow fiber membranes are the most explored for analytes of wide ranging polarities in biomatrices. This discussion will be limited to these protocols. [Pg.35]

The principle of a three-phase membrane extraction is illustrated in Figure 1.28. An organic solvent is immobilized in the pores of a porous polymeric support consisting of a flat filter disc or a hollow fiber-shaped material. This supported liquid membrane (SLM) is formed by treating the support material with an organic solvent that diffuses into its pores. The SLM separates an aqueous... [Pg.35]

Partitioning of components between two immiscible or partially miscible phases is the basis of classical solvent extraction widely used in numerous separations of industrial interest. Extraction is mostly realized in systems with dispergation of one phase into the second phase. Dispergation could be one origin of problems in many systems of interest, like entrainment of organic solvent into aqueous raffinate, formation of stable, difficult-to-separate emulsions, and so on. To solve these problems new ways of contacting of liquids have been developed. An idea to perform separations in three-phase systems with a liquid membrane is relatively new. The first papers on supported liquid membranes (SLM) appeared in 1967 [1, 2] and the first patent on emulsion liquid membrane was issued in 1968 [3], If two miscible fluids are separated by a liquid, which is immiscible with them, but enables a mass transport between the fluids, a liquid membrane (LM) is formed. A liquid membrane enables transport of components between two fluids at different rates and in this way to perform separation. When all three phases are liquid this process is called pertraction (PT). In most processes with liquids membrane contact of phases is realized without dispergation of phases. [Pg.513]

Figure 23.1 Two- and three-phase systems with one and two immobilized L/L interfaces realized with help of microporous hydrophobic wall(s) (support), (a) Two-phase system with one immobilized interface F/S, (b) Three-phase system with two immobilized interfaces F/M and M/R, organic phase in pores serves as a supported liquid membrane (SLM), (c) Three-phase system with two immobilized interfaces F/M and M/R, organic phase in pores and... Figure 23.1 Two- and three-phase systems with one and two immobilized L/L interfaces realized with help of microporous hydrophobic wall(s) (support), (a) Two-phase system with one immobilized interface F/S, (b) Three-phase system with two immobilized interfaces F/M and M/R, organic phase in pores serves as a supported liquid membrane (SLM), (c) Three-phase system with two immobilized interfaces F/M and M/R, organic phase in pores and...
Bardstu, K.F., Ho, T.S., Rasmussen, K.E., Pedersen-Bjergaard, S. and Jonsson, J.A. (2007) Supported liquid membranes in hollow fiber liquid-phase microextraction (LPME) — Practical considerations in the three-phase mode. Journal of Separation Science, 30, 1364. [Pg.541]

Nonporous membrane techniques involve two or three phases separated by distinct phase boundaries. In three-phase membrane systems, a separate membrane phase is surrounded by two different liquid phases (donor and acceptor) forming a system with two phase-boundaries and thus two different extraction (partition) steps. These can be tailored to different types of chemical reactions, leading to a high degree of selectivity. The membrane phase can be a liquid, a polymer, or a gas, and the donor and acceptor phases can be either gas or hquid (aqueous or organic). Liquid membrane phases are often arranged in the pores of a porous hydrophobic membrane support material, which leads to a convenient experimental system, termed supported liquid membrane (SLM). There are several other ways to arrange a hquid membrane phase between two aqueous phases as described below. [Pg.347]

Three-phase liquid membrane Supported liquid membrane extraction SLM [6,85]... [Pg.349]

Note SLM, supported liquid membrane (aq/org/aq) MMLLE, microporous membrane liquid-liquid extraction (aq/org) PME, polymer membrane extraction (aq/polymer/org) MESI, membrane extraction with sorbent interface (aq (or gas)/polymer/gas/sorbent) CFLME, continuous flow liquid membrane extraction (aq/org (in flow)/aq) LPME2, two-phase liquid phase microextraction in hoUow fibers (aq/org) LPME3, three-phase liquid phase microextraction in hollow fibers (aq/org/aq). [Pg.361]

However, ELMs are quite difficult to prepare and after transport, the oil droplets have to be separated and broken up to recover the receiving phase. Compared to the ELM, the BLMs are easier to operate. The supported liquid membranes (SLM) are categorized into two types of supports, namely, a flat-sheet supported liquid membrane (FSSLM) or a hollow fiber supported liquid membrane (HFSLM). Here a polymeric filter with its pores filled with the organic phase acts as membrane. The three different types of liquid membranes have already been schematically represented in Chapter 29. A schematic representation of a hollow fiber semp is shown in Figure 31.2. [Pg.886]

Different extraction techniques have been developed. These techniques have been classified as porous and nonporous, based on their structure, as a flat (like a paper sheet with less than 1 pm of thickness) or hollow fiber (200-500 pm i.d.) configuration. Other classification refers to the number of phases involved in the extraction (one-, two-, or three-phase extraction techniques) [186]. A distinction can be based on the nature of the acceptor phase liquid membrane extractions, where the acceptor phase is a liquid, such as supported liquid membrane (SLM) extraction, microporous membrane liquid-liquid... [Pg.639]

Supported liquid membrane extraction techniques employ either two or three phases, with simultaneous forward- and back-extraction in the latter configuration. The aqueous sample phase is separated from the bulk organic or an aqueous receiver phase by a porous polymer membrane, in the form of either a flat sheet or a hollow fiber that has been impregnated with the organic solvent phase. The sample phase is continuously pumped, the receiver phase may be stagnant or pumped, and the organic phase in the membrane pores is stagnant and reusable [8-10]. [Pg.48]

The teehniques of membrane extraetion permit an effieient and modern applieation of elassieal liquid-liquid extraetion (LLE) ehemistry to instmmental and automated operation. Various shorteomings of LLE are overeome by membrane extraetion teehniques as they use none or very little organie solvents, high enriehment faetors ean be obtained and there ai e no problems with emulsions. A three phase SLM system (aq/org/aq), where analytes are extraeted from the aqueous sample into an organie liquid, immobilized in a porous hydrophobie membrane support, and further to a seeond aqueous phase, is suitable for the extraetion of polar eompounds (aeidie or basie, ehai ged, metals, ete.) and it is eompatible with reversed phase HPLC. A two-phase system (aq/org) where analytes ai e extraeted into an organie solvent sepai ated from the aqueous sample by a hydrophobie porous membrane is more suitable for hydrophobie analytes and is eompatible with gas ehromatography. [Pg.244]

The carrier should not dissolve in the feed liquid or receptor phase in order to avoid leakage from the liquid membrane. In order to achieve sufficient selectivity, minimization of nonselective transport through the bulk of the membrane liquid is required. Liquid membranes can be divided into three basic types [6] emulsion supported and bulk liquid membranes, respectively (Fig. 5-2). [Pg.128]

A schematic of a typical fuel-cell catalyst layer is shown in Figure 9, where the electrochemical reactions occur at the two-phase interface between the electrocatalyst (in the electronically conducting phase) and the electrolyte (i.e., membrane). Although a three-phase interface between gas, electrolyte, and electrocatalyst has been proposed as the reaction site, it is now not believed to be as plausible as the two-phase interface, with the gas species dissolved in the electrolyte. This idea is backed up by various experimental evidence, such as microscopy, and a detailed description is beyond the scope of this review. Experimental evidence also supports the picture in Figure 9 of an agglomerate-type structure where the electrocatalyst is supported on a carbon clump and is covered by a thin layer of membrane. Sometimes a layer of liquid water is assumed to exist on top of the membrane layer, and this is discussed in section 4.4.6. Figure 9 is an idealized picture, and... [Pg.461]

In SLM extraction, the most widely applied type of three-phase membrane extraction, the membrane consists of an organic solvent, which is held by capillary forces in the pores of a hydrophobic porous membrane supporting the membrane liquid. Such membrane support can be either flat porous PTFE or polypropylene membrane sheet or porous polypropylene hollow fibers. Typical solvents are long-chain hydrocarbons like n-undecane or kerosene and more polar compounds like dihexyl ether, dioctyl phosphate, and others. Various additives can increase the efficiency of extraction considerably. The stability of the membrane depends on the solubility and volatility of the organic liquids, and it is generally possible to obtain membrane preparations that are stable up to several weeks. [Pg.349]

Figure i.i Three configurations of liquid membrane systems hulk (BLM), supported (immobilized) (SLM or ILM), and emulsion (ELM). F is the source or feed phase, E is the liquid membrane, and R is the receiving phase. [Pg.5]

Three-phase liquid membrane extraction Supported Uquid membrane extraction SLM 16,98]... [Pg.381]

Contact modalities and concentration profiles in catalytic membrane reactors for three-phase systems.The concentration of reactants is represented on the y-axis and the spatial coordinate along the membrane cross-section is represented on the x-axis. Below the scheme of each case the sequence of the mass transfer (MT) resistances and of the reaction event (R) are reported. (a)Traditional slurry reactor (b) supported thin porous catalytic layer with the liquid impregnating the porosity and the gas phase in contact with the catalytic layer (c) supported thin porous catalytic layer with the liquid impregnating the porosity and the liquid phase in contact with the catalytic layer (d) supported dense membrane which is perm-selective to the gas-phase reactant (e) dense catalytic membrane perm-selective to both reactants in the gas and liquid phases (f) forced flow of the liquid phase enriched with the gas-phase reactant through the thin catalytic membrane layer. [Pg.158]


See other pages where Supported liquid membrane three-phase is mentioned: [Pg.141]    [Pg.652]    [Pg.658]    [Pg.514]    [Pg.125]    [Pg.76]    [Pg.712]    [Pg.816]    [Pg.115]    [Pg.4]    [Pg.262]    [Pg.463]    [Pg.154]    [Pg.51]    [Pg.766]    [Pg.5558]    [Pg.749]    [Pg.262]    [Pg.698]    [Pg.116]    [Pg.694]    [Pg.202]    [Pg.260]    [Pg.490]    [Pg.314]    [Pg.428]    [Pg.14]    [Pg.80]   
See also in sourсe #XX -- [ Pg.35 , Pg.36 , Pg.37 , Pg.38 , Pg.40 ]




SEARCH



Membrane support

Supported liquid membranes

Supported membrane

Three-phase

© 2024 chempedia.info