Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical kinetic

There is no mention in these reviews of any industrial implementation of supercritical kinetics. Two areas of interest are wastewater treatment—for instance, removal of phenol—and reduction of coking on catalysts by keeping heavy oil decomposition products in solution. [Pg.2101]

As it has appeared in recent years that many hmdamental aspects of elementary chemical reactions in solution can be understood on the basis of the dependence of reaction rate coefficients on solvent density [2, 3, 4 and 5], increasing attention is paid to reaction kinetics in the gas-to-liquid transition range and supercritical fluids under varying pressure. In this way, the essential differences between the regime of binary collisions in the low-pressure gas phase and tliat of a dense enviromnent with typical many-body interactions become apparent. An extremely useful approach in this respect is the investigation of rate coefficients, reaction yields and concentration-time profiles of some typical model reactions over as wide a pressure range as possible, which pemiits the continuous and well controlled variation of the physical properties of the solvent. Among these the most important are density, polarity and viscosity in a contimiiim description or collision frequency. [Pg.831]

A crystalline or semicrystalline state in polymers can be induced by thermal changes from a melt or from a glass, by strain, by organic vapors, or by Hquid solvents (40). Polymer crystallization can also be induced by compressed (or supercritical) gases, such as CO2 (41). The plasticization of a polymer by CO2 can increase the polymer segmental motions so that crystallization is kinetically possible. Because the amount of gas (or fluid) sorbed into the polymer is a dkect function of the pressure, the rate and extent of crystallization may be controUed by controlling the supercritical fluid pressure. As a result of this abiHty to induce crystallization, a history effect may be introduced into polymers. This can be an important consideration for polymer processing and gas permeation membranes. [Pg.223]

The coupling of supercritical fluid extraction (SEE) with gas chromatography (SEE-GC) provides an excellent example of the application of multidimensional chromatography principles to a sample preparation method. In SEE, the analytical matrix is packed into an extraction vessel and a supercritical fluid, usually carbon dioxide, is passed through it. The analyte matrix may be viewed as the stationary phase, while the supercritical fluid can be viewed as the mobile phase. In order to obtain an effective extraction, the solubility of the analyte in the supercritical fluid mobile phase must be considered, along with its affinity to the matrix stationary phase. The effluent from the extraction is then collected and transferred to a gas chromatograph. In his comprehensive text, Taylor provides an excellent description of the principles and applications of SEE (44), while Pawliszyn presents a description of the supercritical fluid as the mobile phase in his development of a kinetic model for the extraction process (45). [Pg.427]

J. Pawliszyn, Kinetic model for supercritical fluid extraction , J. Chromatogr. Sci. 31 31-37(1992). [Pg.432]

Development of the theory of nucleation is the long-standing problem in the statistical physics. The kinetic approach to this problem was proposed by Zeldovich" . For the nucleation rate. 7. i.e. for the number of critical and supercritical embryos being formed in the unit volume per unit time at early stages of nucleation, he obtained the following expression... [Pg.111]

A number of Diels Alder reactions have been investigated in supercritical media and some of them will be illustrated. Most of the research has been focused on the influence of the pressure, which greatly influences the density of the fluid, on the kinetic aspects and on the product distribution of the reaction. [Pg.285]

A Kinetic Study on the Solid State Grafting of Maleic Anhydride onto Isotactic Polypropylene in Supercritical CO2... [Pg.673]

The tuning of solubility with a relatively small jump or fall in pressure can possibly bestow many benefits with respect to rates, yields, and selectivity. Reaction parameters can be changed over a wide range. Replacement of solvents with high boiling points by supercritical (SC) fluids offers distinct advantages with respect to removal of the solvent. SC fluids like CO2 are cheap and environmentally friendly the critical temperature of CO2 is 31 C and the critical pressure 73.8 atm (Poliakoff and Howdle, 1995). Eckert and Chandler (1998) have given many examples of the use of SC fluids. Alkylation of phenol with tcrt-butanol in near critical water at 275 °C allows 2- erf-butyl phenol to be formed (a major product when the reaction is kinetically controlled 4-rert-butyl phenol is the major product, when the reaction is... [Pg.172]

Various models of SFE have been published, which aim at understanding the kinetics of the processes. For many dynamic extractions of compounds from solid matrices, e.g. for additives in polymers, the analytes are present in small amounts in the matrix and during extraction their concentration in the SCF is well below the solubility limit. The rate of extraction is then not determined principally by solubility, but by the rate of mass transfer out of the matrix. Supercritical gas extraction usually falls very clearly into the class of purely diffusional operations. Gere et al. [285] have reported the physico-chemical principles that are the foundation of theory and practice of SCF analytical techniques. The authors stress in particular the use of intrinsic solubility parameters (such as the Hildebrand solubility parameter 5), in relation to the solubility of analytes in SCFs and optimisation of SFE conditions. [Pg.85]

We have also investigated the kinetics of free radical initiation using azobisisobutyronitrile (AIBN) as the initiator [24]. Using high pressure ultraviolet spectroscopy, it was shown that AIBN decomposes slower in C02 than in a traditional hydrocarbon liquid solvent such as benzene, but with much greater efficiency due to the decreased solvent cage effect in the low viscosity supercritical medium. The conclusion of this work was that C02 is inert to free radicals and therefore represents an excellent solvent for conducting free radical polymerizations. [Pg.112]

In other experiments, the kinetics were studied in supercritical fluids (24,42) in the presence of very high partial pressures or concentrations of ligand. Under these conditions, the term add[L] is somewhat larger than kis, and Eq. (1) can be simplified to ... [Pg.591]

Activity in the area of medium effects (27) has declined greatly in recent years, though there has been some interest in kinetics and mechanisms in supercritical fluids (28). Indeed activation volumes for ring closure reactions of diimine-carbonyls M(CO) (diimine) show some of the most dramatic medium effects. Thus AF values range from +66 to +4 cm3 mol-1 on going from 7% benzene in supercritical C02 (at 35 °C) to 100% benzene (at 25 °C) (29). [Pg.74]

Initiator decomposition studies of AIBN in supercritical C02 carried out by DeSimone et al. showed that there is kinetic deviation from the traditionally studied solvent systems.16 These studies indicated a measurable decrease in the thermal decomposition of AIBN in supercritical C02 over decomposition rates measured in benzene. Kirkwood correlation plots indicate that the slower rates in supercritical C02 emanate from the overall lower dielectric constant (e) of C02 relative to that ofbenzene. Similar studies have shown an analogous trend in the decomposition kinetics ofperfluoroalkyl acyl peroxides in liquid and supercritical C02.17 Rate decreases of as much as 30% have been seen compared to decomposition measured in 1,1,2-trichlorotrifluoroethane. These studies also served to show that while initiator decomposition is in general slower in supercritical C02, overall initiation is more efficient. Uv-visual studies incorporating radical scavengers concluded that primary geminate radicals formed during thermal decomposition in supercritical C02 are not hindered to the same extent by cage effects as are those in traditional solvents such as benzene. This effect noted in AIBN decomposition in C02 is ascribed to the substantially lower viscosity of supercritical C02 compared to that ofbenzene.18... [Pg.194]

J. P. DeYoung, J. Kalda, and J. M. DeSimone, Decomposition kinetics of perfluoroalkyl acyl peroxides in liquid and supercritical carbon dioxide, in preparation. [Pg.204]

Oxidation of unfunctionalized alkanes is notoriously difficult to perform selectively, because breaking of a C-H bond is required. Although oxidation is thermodynamically favourable, there are limited kinetic pathways for reaction to occur. For most alkanes, the hydrogens are not labile, and, as the carbon atom cannot expand its valence electron shell beyond eight electrons, there is no mechanism for electrophilic or nucleophilic substitution short of using extreme (superacid or superbase) conditions. Alkane oxidations are therefore normally radical processes, and thus difficult to control in terms of selectivity. Nonetheless, some oxidations of alkanes have been performed under supercritical conditions, although it is probable that these actually proceed via radical mechanisms. [Pg.183]

What follows is an attempt to give some insight into a problem that could arise in some cases related to combustion kinetics, but not necessarily related to the complete held of supercritical use as described in pure chemistry texts and papers. It is apparent that the high pressure in the supercritical regime not only affects the density (concentration) of the reactions, but also the dififusivity of the species that form during pyrolysis of important intermediates that occur in fuel pyrolysis. Indeed, as well, in considering the supercritical regime one must also be concerned that the normal state equation may not hold. [Pg.140]

M. Buback, Kinetics and selectivity of chemical processes in fluid phases, in Supercritical Fluids Fundamentals for Application, E. Kiran and J. M. H. Levelt-Sengers, eds., Kluwer, Dordrecht, 1994. [Pg.224]


See other pages where Supercritical kinetic is mentioned: [Pg.98]    [Pg.3]    [Pg.227]    [Pg.228]    [Pg.336]    [Pg.432]    [Pg.620]    [Pg.673]    [Pg.324]    [Pg.500]    [Pg.38]    [Pg.187]    [Pg.308]    [Pg.81]    [Pg.94]    [Pg.343]    [Pg.410]    [Pg.127]    [Pg.617]    [Pg.200]    [Pg.868]    [Pg.143]    [Pg.229]    [Pg.261]    [Pg.261]    [Pg.1112]    [Pg.45]    [Pg.793]    [Pg.56]   
See also in sourсe #XX -- [ Pg.511 ]




SEARCH



Kinetic model for supercritical

Kinetics, supercritical fluids

Supercritical mass transfer kinetics

© 2024 chempedia.info