Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulphonability test

Sulphonation test with 5% oleum not less than 96 vol. % should be sulphonated... [Pg.347]

The free oil guaranteed figures are achievable when the organic raw material sulph(on)atability is 99.0% (the sulphonatability would be established by analysis of the paraffin content in the free oil extracted from ie acid after the sulphonability test) and with a 99.5% yield of the sulphonable compound. [Pg.183]

Sodium mlphanilate.—Burns with difficulty, leaving a residue of (chiefly) sodium sulphide. Add dil. HCl, and confirm without delay the evolution of HjS by means of a filter-pa per moistened with lead acetate solution. Typical of salts of the sulphonic acids. Acetone sodium bisulphite.—Almost non-inflammable, leaving a colourless residue of sodium sulphite and sulphate. Transfer residue to a test-tube, add dil. HCl, warm, and confirm the SO2 evolved. [Pg.320]

Lassaigne s test is obviously a test also for carbon in the presence of nitrogen. It can be used therefore to detect nitrogen in carbon-free inorganic compounds, e.g., complex nitrites, amino-sulphonic acid derivatives, etc., but such compounds must before fusion with sodium be mixed with some non-volatile nitrogen-free organic compound such as starch... [Pg.323]

SULPHONATION OF AROMATIC AMINES If aniline is treated with excess of concentrated sulphuric acid and the resulting mixture, which contains aniline sulphate, is heated at 180° until a test portion when mixed with sodium hydroxide solution no longer liberates aniline, p-aminobenzenesulphonic acid or sulphanilic acid is formed this separates as the dihydrate upon pouring the cooled mixture into water. The reaction prohahly proceeds as follows ... [Pg.585]

In a 500 ml. bolt-head flask, provided with a mechanical stirrer, place 70 ml. of oleum (20 per cent. SO3) and heat it in an oil bath to 70°. By means of a separatory funnel, supported so that the stem is just above the surface of the acid, introduce 41 g. (34 ml.) of nitrobenzene slowly and at such a rate that the temperature of the well-stirred mixture does not rise above 100-105°. When all the nitrobenzene has been introduced, continue the heating at 110-115° for 30 minutes. Remove a test portion and add it to the excess of water. If the odour of nitrobenzene is still apparent, add a further 10 ml. of fuming sulphuric acid, and heat at 110-115° for 15 minutes the reaction mixture should then be free from nitrobenzene. Allow the mixture to cool and pour it with good mechanical stirring on to 200 g. of finely-crushed ice contained in a beaker. AU the nitrobenzenesulphonic acid passes into solution if a little sulphone is present, remove this by filtration. Stir the solution mechanically and add 70 g. of sodium chloride in small portions the sodium salt of m-nitro-benzenesulphonic acid separates as a pasty mass. Continue the stirring for about 30 minutes, allow to stand overnight, filter and press the cake well. The latter will retain sufficient acid to render unnecessary the addition of acid in the subsequent reduction with iron. Spread upon filter paper to dry partially. [Pg.589]

Dissolve 1 0 g. of the compound in 5 ml. of dry chloroform in a dry test-tuhe, cool to 0°, and add dropwise 5g. (2-8 ml.) of redistilled chloro-sulphonic acid. When the evolution of hydrogen chloride subsides, allow the reaction mixture to stand at room temperature for 20 minutes. Pour the contents of the test-tube cautiously on to 25 g. of crushed ice contained in a small beaker. Separate the chloroform layer and wash it with a httle cold water. Add the chloroform layer, with stirring, to 10 ml. of concentrated ammonia solution. After 10 minutes, evaporate the chloroform on a water bath, cool the residue and treat it with 5 ml. of 10 per cent, sodium hydroxide solution the sulphonamide dissolves as the sodium derivative, RO.CgH4.SO,NHNa. Filter the solution to remove any insoluble matter (sulphone, etc.), acidify the filtrate with dilute hydrochloric acid, and cool in ice water. Collect the sulphonamide and recrystallise it from dilute alcohol. [Pg.672]

Hydrolysis of a sulphonamide. Mix 2 g. of the sulphonamide with 3-5 ml. of 80 per cent, sulphuric acid in a test-tube and place a thermometer in the mixture. Heat the test-tube, with frequent stirring by means of the thermometer, at 155-165° until the solid passes into solution (2-5 minutes). Allow the acid solution to cool and pour it into 25-30 ml. of water. Render the resulting solution alkaline with 20 per cent, sodium hydroxide solution in order to liberate the free amine. Two methods may be used for isolating the base. If the amine is volatile in steam, distil the alkaline solution and collect about 20 ml. of distillate extract the amine with ether, dry the ethereal solution with anhydrous potassium carbonate and distil off the solvent. If the amine is not appreciably steam-volatile, extract it from the alkaline solution with ether. The sulphonic acid (as sodium salt) in the residual solution may be identified as detailed under 13. [Pg.1077]

The condensation reaction is promoted by certain polar solvents and of the many which have been tested dimethyl sulphoxide appears to be the most effective. As usual with linear condensation polymers molecular equivalence and near-absence of monofunctional material is necessary to ensure a high molecular weight. Moisture and alcohols can also have a devastating effect on the molecular weight. In the case of water it is believed that 4-chlorophenyl 4-hydroxyphenyl sulphone is formed which functions as an effective chain terminator. Gross contamination with air is also believed to reduce the maximum attainable molecular weight as well as causing intense discolouration. [Pg.599]

In this case the sulphonic acid group is present in a sulphon-phthalein dye namely the indicator bromophenol blue. As in the previous example, the species (R3NH + )(R S03 ) can be extracted into chloroform whilst the indicator itself is not extracted, and the colour of the extract is proportional to the quantity of surfactant in the material under test. [Pg.707]

F-test 140, (T) 841 Faraday constant 60, 504 Faraday s laws 503, 504 Fast sulphon black F 319 Fats D. of saponification value, (ti) 308 Ferric alum indicator see Ammonium iron(III) sulphate... [Pg.863]

Given the above possible reaction mechanism, it is then intriguing to speculate that another approach to the same stereoselective reduction of a vinyl sulphone could be achieved by the use of a suitably sterically hindered organosilane, as outlined in equation (64). Such a reaction would provide an interesting test for the stereoelectronics of a conjugate addition reaction by a second-row heteroatom to a vinyl sulphone. [Pg.952]

Optimal Salinities Phase inversions at optimal salinity were assessed routinely by salt titrations into systems maintained at constant temperature. For the Leonox IOS surfactant system, increasing levels of salinity were necessary to cause the emulsion state to phase invert as the alkane molecular weight increased (Figure 11). Ihe initial conductivity value at the condition where zero salt had been added may in part reflect the salt contamination naturally present within the supplied formulation. Ihe internal olefin sulphonate species again revealed a linear relationship between EACN and optimal salinity as did all ionic formulations under test (see Figures 12 and 13, plus Table III). Ihe estimation of EACN values for both toluene... [Pg.315]

Most recently, development testwork was performed on a large perovskite deposit (Powderhom) located in the USA. An effective beneficiation process was developed, where a concentrate assaying >50% Ti02 was achieved in the pilot plant confirmation tests [7]. During this development testwork, a number of different collectors were examined at different pH values. Figure 25.5 shows the effect of the different collectors on perovsikte flotation. The most effective collector was phosphoric acid ester modified with either fatty alcohol sulphate or petroleum sulphonate. [Pg.182]

Procedure for the Chinese Hamster V79/Hgprt Assay. The assay usually comprises three test concentrations, each in duplicate, and four vehicle control replicates. Suitable positive controls are ethylmethane sulphonate (—S9) and dimethyl benzanthracene (+S9). V79 cells with a low nominal passage number should be used from frozen stocks to help minimize genetic drift. The procedure described includes a reseeding step for mutation expression. [Pg.208]

It is technically possible, but very difficult, to measure the exact frequency of a radio signal, and in practice the frequency of the energy absorbed by a test compound (usually called the resonance frequency) is measured relative to that of a reference compound. This reference may be mixed with the sample (direct referencing), or if contamination of the sample is undesirable it may be placed in a separate container within the sample tube (external referencing). In proton and 13C NMR, the reference compound usually used is TMS (tetra-methyl silane) or its water-soluble derivative DSS (2,2-dimethylsilapentane 5-sulphonic acid). These compounds give a sharp proton peak at the right-hand side of a typical NMR spectrum (Figure 2.39). [Pg.88]


See other pages where Sulphonability test is mentioned: [Pg.173]    [Pg.586]    [Pg.588]    [Pg.624]    [Pg.332]    [Pg.110]    [Pg.111]    [Pg.113]    [Pg.119]    [Pg.934]    [Pg.1018]    [Pg.332]    [Pg.110]    [Pg.111]    [Pg.113]    [Pg.119]    [Pg.934]    [Pg.1018]    [Pg.173]    [Pg.586]    [Pg.588]    [Pg.624]    [Pg.320]    [Pg.325]    [Pg.184]    [Pg.117]    [Pg.463]   
See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Tests for Complete Sulphonation

© 2024 chempedia.info