Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulphides electrochemical

In electrochemical cells sample oxidation produces an electric current proportional to the concentration of test substance. Sometimes interferences by other contaminants can be problematic and in general the method is poorer than IR. Portable and static instruments based on this method are available for specific chemicals, e.g. carbon monoxide, chlorine, hydrogen sulphide. [Pg.310]

Fig. 1.57 Electrochemical reactions that occur when a pit is initiated at sulphide inclusion in a carbon steel (after Wranglen )... Fig. 1.57 Electrochemical reactions that occur when a pit is initiated at sulphide inclusion in a carbon steel (after Wranglen )...
Szklarska-Smialowska, Z., Electron Microprobe Study of the Effect of Sulphide Inclusions on the Nucleation of Corrosion Pits in Stainless Steels , Br. Corros. J., S, 159 (1970) Weinstein, M. and Speirs, K., Mechanisms of Chloride-activated Pitting Corrosion of Martensitic Stainless Steels , J. Electrochem. Soc., 117, 256 (1970)... [Pg.206]

This is a simplified treatment but it serves to illustrate the electrochemical nature of rusting and the essential parts played by moisture and oxygen. The kinetics of the process are influenced by a number of factors, which will be discussed later. Although the presence of oxygen is usually essential, severe corrosion may occur under anaerobic conditions in the presence of sulphate-reducing bacteria Desulphovibrio desulphuricans) which are present in soils and water. The anodic reaction is the same, i.e. the formation of ferrous ions. The cathodic reaction is complex but it results in the reduction of inorganic sulphates to sulphides and the eventual formation of rust and ferrous sulphide (FeS). [Pg.488]

Very low asymmetric induction (e.e. 0.3-2.5%) was noted when unsymmetrical sulphides were electrochemically oxidized on an anode modified by treatment with (— )camphoric anhydride or (S)-phenylalanine methyl ester299. Much better results were obtained with the poly(L-valine) coated platinum electrodes300. For example, t-butyl phenyl sulphide was converted to the corresponding sulphoxide with e.e. as high as 93%, when electrode coated with polypyrrole and poly(L-valine) was used. [Pg.292]

Edwards two-parameter equation 549 Electrochemical oxidation of sulphides 76, 252, 253 of sulphoxides 968, 987, 1043 Electrochemical reduction of sulphones 962, 963, 1002-1041 of sulphoxides 933, 1041, 1042 Electronegativity, of the sulphur atom 584 Electronic effects 390, 484-535 Electron scavengers 892, 896 Electron spin resonance spectroscopy 874, 890-895, 1050-1055, 1082, 1083, 1090-1093... [Pg.1200]

Peter LM, Reid ID, Scharifker BR (1981) Electrochemical adsorption and phase formation on mercury in sulphide ion solutions. 1 Electroanal Chem 119 73-91 Da Silva Pereira MI, Peter LM (1982) Photocurrent spectroscopy of semiconducting anodic films on mercury. J Electroanal Chem 131 167-179... [Pg.141]

McCann JE, SkyUas Kazacos M (1981) The Electrochemical deposition and formation of cadmium sulphide thin film electrodes in aqueous electrolytes. J Electroanal Chem 119 409-412... [Pg.141]

Peter LM, Wright GA (1987) Electrochemical kinetics of bismuth sulphide formation on bismuth amalgam. Electrochim Acta 32 1353-1356... [Pg.149]

The electrochemical intercalation/insertion is not a special property of graphite. It is apparent also with many other host/guest pairs, provided that the host lattice is a thermodynamically or kinetically stable system of interconnected vacant lattice sites for transport and location of guest species. Particularly useful are host lattices of inorganic oxides and sulphides with layer or chain-type structures. Figure 5.30 presents an example of the cathodic insertion of Li+ into the TiS2 host lattice, which is practically important in lithium batteries. [Pg.329]

The concept of electrochemical intercalation/insertion of guest ions into the host material is further used in connection with redox processes in electronically conductive polymers (polyacetylene, polypyrrole, etc., see below). The product of the electrochemical insertion reaction should also be an electrical conductor. The latter condition is sometimes by-passed, in systems where the non-conducting host material (e.g. fluorographite) is finely mixed with a conductive binder. All the mentioned host materials (graphite, oxides, sulphides, polymers, fluorographite) are studied as prospective cathodic materials for Li batteries. [Pg.329]

Except for the development of on-line systems for nutrients monitoring, the measurement of other inorganic non-metallic constituents is rather rare. Some commercial systems based on electrochemical sensing are proposed for the measurement of cyanide. A simple and rapid procedure for sulphide measurement in crude oil refinery wastewater has been developed [ 32 ]. Based on the de-convolution of the UV spectrum of a sample, this method has a detection limit of 0.5 mg L 1 and has been validated for crude oil refinery wastewater. [Pg.259]

Abstract This chapter reviews the development of froth flotation achieved in the past one hundred years and accounts for the achievements of the theory of flotation of sulphide minerals in four aspects, which are the natural flotahility of sulphide minerals, the role of oxygen in the flotation of sulphide minerals, the interaction of collectors with sulphide minerals, the effect of the semi-conductor property of sulphide minerals and electrochemical behaviors in the grinding system. Furthermore, the purpose of this book is revealed in the end. [Pg.1]

Since the 1960s , various electrochemical methods such as linear potential sweep voltammetry, cyclic voltammetry etc. and various surface analysis apparatuses such as infrared spectra, X-ray photoelecfron spectroscopy etc. have been developed to investigate the electrochemical reaction mechanism involved in the flotation of sulphide minerals (Fuerstenau et al., 1968 Woods, 1976 Ahmed, 1978 Stm, 1990 Feng, 1989 Buckley, 1995 Arce and Gonzalez, 2002 Bulut and Atak, 2002 Costa et al., 2002). [Pg.2]

Therefore, it has been concluded that the reduction of oxygen as a cathodic process was essential for the electrochemical reaction on sulphide surface and was different for various sulphide minerals. The reduction of oxygen affected the oxidation of sulphide minerals and the interactions with collectors, which had a pronounced influence on flotation behavior of sulphide minerals (Ahmed, 1978 Buckley et al., 1985, 1995 Woods, 1984,1994 Hu et al., 2004 Yu et al., 2004a Zhang et al., 2004a, d). [Pg.8]

The mixed-potential model demonstrated the importance of electrode potential in flotation systems. The mixed potential or rest potential of an electrode provides information to determine the identity of the reactions that take place at the mineral surface and the rates of these processes. One approach is to compare the measured rest potential with equilibrium potential for various processes derived from thermodynamic data. Allison et al. (1971,1972) considered that a necessary condition for the electrochemical formation of dithiolate at the mineral surface is that the measmed mixed potential arising from the reduction of oxygen and the oxidation of this collector at the surface must be anodic to the equilibrium potential for the thio ion/dithiolate couple. They correlated the rest potential of a range of sulphide minerals in different thio-collector solutions with the products extracted from the surface as shown in Table 1.2 and 1.3. It can be seen from these Tables that only those minerals exhibiting rest potential in excess of the thio ion/disulphide couple formed dithiolate as a major reaction product. Those minerals which had a rest potential below this value formed the metal collector compoimds, except covellite on which dixanthogen was formed even though the measured rest potential was below the reversible potential. Allison et al. (1972) attributed the behavior to the decomposition of cupric xanthate. [Pg.9]

Effect of Semiconductor Properly of Sulphide Mineral on Its Electrochemical Behavior... [Pg.13]

This book systematically summarizes the researches on electrochemistry of sulphide flotation in our group. The various electrochemical measurements, especially electrochemical corrosive method, electrochemical equilibrium calculations, surface analysis and semiconductor energy band theory, practically, molecular orbital theory, have been used in our studies and introduced in this book. The collectorless and collector-induced flotation behavior of sulphide minerals and the mechanism in various flotation systems have been discussed. The electrochemical corrosive mechanism, mechano-electrochemical behavior and the molecular orbital approach of flotation of sulphide minerals will provide much new information to the researchers in this area. The example of electrochemical flotation separation of sulphide ores listed in this book will demonstrate the good future of flotation electrochemistry of sulphide minerals in industrial applications. [Pg.19]

Abstract This chapter first explains the natural flotability of some minerals in the aspect of the crystal structure and demonstates the collectorless flotaiton of some minerals and its dependence on the h and pH of pulp. And then the surface oxidation is analysed eletrochemically and the relations of E to the composition of the solutions are calculated in accordance with Nemst Equation. The E h-pH diagrams of several minerals are obtained. Thereafter, electrochemical determination such as linear potential sweep voltammetry (LPSV) and cyclic voltammetry (CV) and surface analysis of surface oxidation applied to the sulphide minerals are introduced. And recent researches have proved that elemental sulfur is the main hydrophobic entity which causes the collectorless flotability and also revealed the relation of the amount of sulfur formed on the mineral surfaces to the recoveries of minerals, which is always that the higher the concentration of surface sulphur, the quicker the collectorless flotation rate and thus the higher the recovery. [Pg.20]

Electrochemical Equilibriums of the Surface Oxidation and Flotation of Sulphide Minerals... [Pg.28]

Many investigators have used different techniques to study the electrochemical behavior of different sulphide mineral electrodes in solutions of different compositions. Linear potential sweep voltammetry (LPSV), and cyclic voltammetry (CV) have been perhaps, used most extensively and applied successfully to the investigation of reactions of sulphide minerals with aqueous systems. These techniques have provided valuable information on the extent of oxidation as a function of potential for various solution conditions and have allowed the identity of the surface products to be deduced. [Pg.41]


See other pages where Sulphides electrochemical is mentioned: [Pg.319]    [Pg.396]    [Pg.252]    [Pg.986]    [Pg.82]    [Pg.252]    [Pg.986]    [Pg.166]    [Pg.723]    [Pg.242]    [Pg.269]    [Pg.67]    [Pg.2]    [Pg.3]    [Pg.7]    [Pg.8]    [Pg.14]    [Pg.17]   
See also in sourсe #XX -- [ Pg.76 , Pg.252 , Pg.253 ]




SEARCH



Electrochemical Flotation Separation of Sulphide Minerals

Electrochemical Mechanism of Copper Activating Zinc-Iron Sulphide Minerals

Hydrogen sulphide electrochemical sensors

© 2024 chempedia.info