Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur dioxide formation

Atmospheric oxygen appears to accelerate hydrogen sulfide and sulfur dioxide formation by sulfur-dusted lemons. An experiment in which lemons were incubated in a bottle which was opened hourly during the day yielded more hydrogen sulfide and more sulfur dioxide than when the bottle was kept closed at night, though the entire experiment was conducted in the dark (18). [Pg.251]

Knowing the contents of nitrogen and sulfur in coals, combustion engineers are in a position to take appropriate approaches to control nitrogen and sulfur dioxide formations. Another useful application of the ultimate analysis is to estimate the heat of combustion by assuming a negligible heat of formation of the organic matter relative to the heat of combustion of the elements 20... [Pg.343]

Characterize the methods for reduction of sulfur dioxide formation during coal combustion. [Pg.114]

Formation of emissions from fluidised-bed combustion is considerably different from that associated with grate-fired systems. Flyash generation is a design parameter, and typically >90% of all soHds are removed from the system as flyash. SO2 and HCl are controlled by reactions with calcium in the bed, where the lime-stone fed to the bed first calcines to CaO and CO2, and then the lime reacts with sulfur dioxide and oxygen, or with hydrogen chloride, to form calcium sulfate and calcium chloride, respectively. SO2 and HCl capture rates of 70—90% are readily achieved with fluidi2ed beds. The limestone in the bed plus the very low combustion temperatures inhibit conversion of fuel N to NO. ... [Pg.58]

Impurities can be removed by formation of a gaseous compound, as in the fire-refining of copper (qv). Sulfur is removed from the molten metal by oxidation with air and evolution of sulfur dioxide. Oxygen is then removed by reduction with C, CO, in the form of natural gas, reformed... [Pg.169]

Phosphoms(V) sulfide is a mild skin irritant and may cause dermatitis in sensitive individuals. The primary health ha2ard results from the Hberation of hydrogen sulfide after contact with moisture. Contact with moisture also forms phosphoric acid. A secondary ha2ard is the formation of sulfur dioxide when phosphoms(V) sulfide bums. The oral LD q of in rats is 389 mg/kg the OSHA standard time-weighted average (TWA) is 1 mg /m (33). [Pg.365]

Selenium and precious metals can be removed selectively from the chlorination Hquor by reduction with sulfur dioxide. However, conditions of acidity, temperature, and a rate of reduction must be carefliUy controlled to avoid the formation of selenium monochloride, which reacts with elemental selenium already generated to form a tar-like substance. This tar gradually hardens to form an intractable mass which must be chipped from the reactor. Under proper conditions of precipitation, a selenium/precious metals product substantially free of other impurities can be obtained. Selenium can be recovered in a pure state by vacuum distillation, leaving behind a precious metals residue. [Pg.330]

Whereas sulfolane is relatively stable to about 220°C, above that temperature it starts to break down, presumably to sulfur dioxide and a polymeric material. Sulfolane, also stable in the presence of various chemical substances as shown in Table 2 (2), is relatively inert except toward sulfur and aluminum chloride. Despite this relative chemical inertness, sulfolane does undergo certain reactions, for example, halogenations, ting cleavage by alkah metals, ring additions catalyzed by alkah metals, reaction with Grignard reagents, and formation of weak chemical complexes. [Pg.68]

Certain of the above reactions are of practical importance. The oxidation of hydrogen sulfide in a flame is one means for producing the sulfur dioxide required for a sulfuric acid plant. Oxidation of hydrogen sulfide by sulfur dioxide is the basis of the Claus process for sulfur recovery. The Claus reaction can also take place under mil der conditions in the presence of water, which catalyzes the reaction. However, the oxidation of hydrogen sulfide by sulfur dioxide in water is a complex process leading to the formation of sulfur and polythionic acids, the mixture known as Wackenroeder s Hquid (105). [Pg.134]

Physical Properties. Sulfur dioxide [7446-09-5] SO2, is a colorless gas with a characteristic pungent, choking odor. Its physical and thermodynamic properties ate Hsted in Table 8. Heat capacity, vapor pressure, heat of vaporization, density, surface tension, viscosity, thermal conductivity, heat of formation, and free energy of formation as functions of temperature ate available (213), as is a detailed discussion of the sulfur dioxide—water system (215). [Pg.143]

A method suitable for analysis of sulfur dioxide in ambient air and sensitive to 0.003—5 ppm involves aspirating a measured air sample through a solution of potassium or sodium tetrachloromercurate, with the resultant formation of a dichlorosulfitomercurate. Ethylenediaminetetraacetic acid (EDTA) disodium salt is added to this solution to complex heavy metals which can interfere by oxidation of the sulfur dioxide. The sample is also treated with 0.6 wt % sulfamic acid to destroy any nitrite anions. Then the sample is treated with formaldehyde and specially purified acid-bleached rosaniline containing phosphoric acid to control pH. This reacts with the dichlorosulfitomercurate to form an intensely colored rosaniline—methanesulfonic acid. The pH of the solution is adjusted to 1.6 0.1 with phosphoric acid, and the absorbance is read spectrophotometricaHy at 548 nm (273). [Pg.147]

The electrochemical process, commercialized in the late 1980s, is the newest available technology and utilizes only caustic and sulfur dioxide as raw materials (359). Anhydrous or solution product can be manufactured by all processes however, the formate and zinc processes typically produce dry product, the amalgam and electrochemical processes typically produce solution product. [Pg.150]

Economic Aspects. U.S. capacity for production of merchant sodium dithionite (soHds basis) was estimated at 93,000 metric tons in 1994. There are three North American producers of sodium dithionite. Hoechst Celanese is the largest producer (68,000 tons capacity) with two formate production locations and one zinc process location. Olin (25,000 t capacity) produces solution product only at two locations using both the amalgam and electrochemical processes. In 1994, Vulcan started a small solution plant in Wisconsin using the Olin electrochemical process. In addition, it is estimated that 13,000 t/yr is produced at U.S. pulp mills using the Borol process from sulfur dioxide and sodium borohydride. Growth is estimated at 2—3%/yr. The... [Pg.150]

An evaporator—crystallizer is used to reverse the sodium bisulfite formation reaction and release the sulfur dioxide as a vapor. The regenerated sodium sulfite, which crystallizes out of solution, is redissolved and returned to the absorber. The absorber overhead gas can be vented to the atmosphere. A concentrated sulfur dioxide stream is produced as a by-product of this process. [Pg.217]

Acidification of thiosulfate with strong acid invariably leads to decomposition with the formation of colloidal sulfur and sulfur dioxide. The mechanism of this reaction is complex and depends on the thiosulfate concentration and the pH (14). The following reaction explains the formation of the main products ... [Pg.27]

If tin and sulfur are heated, a vigorous reaction takes place with the formation of tin sulfides. At 100—400°C, hydrogen sulfide reacts with tin, forming stannous sulfide however, at ordinary temperatures no reaction occurs. Stannous sulfide also forms from the reaction of tin with an aqueous solution of sulfur dioxide. Molten tin reacts with phosphoms, forming a phosphide. Aqueous solutions of the hydroxides and carbonates of sodium and potassium, especially when warm, attack tin. Stannates are produced by the action of strong sodium hydroxide and potassium hydroxide solutions on tin. Oxidizing agents, eg, sodium or potassium nitrate or nitrite, are used to prevent the formation of stannites and to promote the reactions. [Pg.64]

Addition of up to 200 ppm sulfur dioxide to grape musts is customary. Strains of S. cerevisiae and S. bayanus grown in the presence of sulfite, become tolerant of fairly high concentrations of SO2. Cultures propagated in the winery are added in Hquid suspension, usually at 1—2% of the must volume. Many strains are available in pure culture. Factors such as flocculence, lack of foaming, fast fermentation, lack of H2S and SO2 formation, resistance to sulfur dioxide and other inhibitors, and flavor production will affect strain choice. No strain possesses all the desired properties. [Pg.392]

Arsenates are oxidizing agents and are reduced by concentrated hydrochloric acid or sulfur dioxide. Treatment of a solution of orthoarsenate with silver nitrate in neutral solution results in the formation of a chocolate-brown precipitate of silver orthoarsenate, Ag AsO, which may be used as a test to distinguish arsenates from phosphates. With hydrofluoric acid, orthoarsenate solutions yield hexafluoroarsenates, eg, potassium hexafluoroarsenate [17029-22-0] (KAsFg)2 H2O. Arsenates of calcium or lead are used as insecticides sodium arsenate is used in printing inks and as a mordant. [Pg.334]

Dithionites. Although the free-dithionous acid, H2S2O4, has never been isolated, the salts of the acid, in particular zinc [7779-86-4] and sodium dithionite [7775-14-6] have been prepared and are widely used as industrial reducing agents. The dithionite salts can be prepared by the reaction of sodium formate with sodium hydroxide and sulfur dioxide or by the reduction of sulfites, bisulfites, and sulfur dioxide with metallic substances such as zinc, iron, or zinc or sodium amalgams, or by electrolytic reduction (147). [Pg.149]

Thiirane 1,1-dioxides extrude sulfur dioxide readily (70S393) at temperatures usually in the range 50-100 °C, although some, such as c/s-2,3-diphenylthiirane 1,1-dioxide or 2-p-nitrophenylthiirane 1,1-dioxide, lose sulfur dioxide at room temperature. The extrusion is usually stereospeciflc (Scheme 10) and a concerted, non-linear chelotropic expulsion of sulfur dioxide or a singlet diradical mechanism in which loss of sulfur dioxide occurs faster than bond rotation may be involved. The latter mechanism is likely for episulfones with substituents which can stabilize the intermediate diradical. The Ramberg-Backlund reaction (B-77MI50600) in which a-halosulfones are converted to alkenes in the presence of base, involves formation of an episulfone from which sulfur dioxide is removed either thermally or by base (Scheme 11). A similar conversion of a,a -dihalosulfones to alkenes is effected by triphenylphosphine. Thermolysis of a-thiolactone (5) results in loss of carbon monoxide rather than sulfur (Scheme 12). [Pg.141]

Hydroxyl radicals, generated from hydrogen peroxide and titanium trichloride, add to the sulfur atom of 2-methylthiirane 1-oxide leading to the formation of propene and the radical anion of sulfur dioxide (Scheme 102) (75JCS(P2)308). [Pg.167]

The formation of 2,3-di-f-butyl-l-methylthiirenium chloride from fran5-3-chloro-4-methylthio-2,2,5,5-tetramethyl-3-hexene is quantitative (by NMR) in liquid sulfur dioxide (Scheme 128) (82JOC590). Similar thiirenium ions are intermediates in the reactions of -thiovinyl derivatives (79MI50600). [Pg.175]


See other pages where Sulfur dioxide formation is mentioned: [Pg.149]    [Pg.53]    [Pg.54]    [Pg.37]    [Pg.224]    [Pg.358]    [Pg.481]    [Pg.39]    [Pg.116]    [Pg.164]    [Pg.443]    [Pg.8]    [Pg.18]    [Pg.148]    [Pg.148]    [Pg.183]    [Pg.216]    [Pg.216]    [Pg.400]    [Pg.85]    [Pg.407]    [Pg.508]    [Pg.168]    [Pg.174]    [Pg.175]    [Pg.176]    [Pg.180]    [Pg.277]    [Pg.888]   
See also in sourсe #XX -- [ Pg.370 ]




SEARCH



© 2024 chempedia.info