Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfonic acids, addition

Polymerization of olefins such as styrene is promoted by acid or base or sodium catalysts, and polyethylene is made with homogeneous peroxides. Condensation polymerization is catalyzed by acid-type catalysts such as metal oxides and sulfonic acids. Addition polymerization is used mainly for olefins, diolefins, and some carbonyl compounds. For these processes, initiators are coordination compounds such as Ziegler-type catalysts, of which halides of transition metals Ti, V, Mo, and W are important examples. [Pg.2095]

An example of polymer additive to electrolyte is FORAFAC 1033D (polyfluoroalkyl sulfonic acid). Addition of FORAFAC 1033D in a concentration of 0.1 wt% to the electrolyte immobilized in AGM VRLA batteries leads to a major improvement of battery cycle life [49]. Standby batteries containing FORAFAC have improved their service bfe by a factor of 1.5, suffering smaller water loss and reduced self-discharge. [Pg.142]

Action of HSO3CI on 2-substituted thiazoles affords the 5-chlorosulfonyl derivatives (337, 338). Addition of 6-phenylthiazolo[2,3-e]tetra2ole to oleum opens the tetrazole ring to form 2-azido-4-phenyI-thiazolyl-5-sulfonic acid, isolated as its salt (339). 5-Chloro-sulphonyl derivative is obtained similarly by action of HSO,Cl. [Pg.414]

As in most electrophilic reactions, the abiUty to stabilize the positive charge generated by the initial addition strongly affects the relative rates. MX reacts faster than OX and PX because both methyl groups work in conjunction to stabilize the charge on the next-but-one carbon. Sulfonation was, at one time, used to separate MX from the other Cg aromatic isomers. MX reacts most rapidly to form the sulfonic acid which remains in the aqueous phase. The sulfonation reaction is reversible, and MX can be regenerated. [Pg.414]

Esters. Most acryhc acid is used in the form of its methyl, ethyl, and butyl esters. Specialty monomeric esters with a hydroxyl, amino, or other functional group are used to provide adhesion, latent cross-linking capabihty, or different solubihty characteristics. The principal routes to esters are direct esterification with alcohols in the presence of a strong acid catalyst such as sulfuric acid, a soluble sulfonic acid, or sulfonic acid resins addition to alkylene oxides to give hydroxyalkyl acryhc esters and addition to the double bond of olefins in the presence of strong acid catalyst (19,20) to give ethyl or secondary alkyl acrylates. [Pg.150]

Currently, the commercially important methods of preparations of perfluorkiated sulfonic acid derivatives are electrochemical fluotination and sulfur trioxide addition to tetrafluoroethylene with subsequent ring opening. [Pg.314]

Sulfonation can be conducted with naphthalene—92 wt % H2SO4 in a 1 1.1 mole ratio with staged acid addition at 160°C over 2.5 h to give a 93% yield of the desired product (20). Continuous mono sulfonation of naphthalene with 96 wt % sulfuric acid in a cascade reactor at ca 160°C gives... [Pg.491]

Naphthalenediol. This diol is prepared by the alkah fusion of 2-hydroxynaphthalene-6-sulfonic acid (Schaffer acid) at 290—295°C. Schaffer acid is usually produced by sulfonation of 2-naphthol with the addition of sodium sulfate at 85—105°C. This acid is also used as a coupling component in the production of a2o dyes such as Acid Black 26. 2,6-Naphthalenediol is used as a component in the manufacture of aromatic polyesters which, as is also tme of the corresponding amides, display Hquid crystal characteristics (52). [Pg.500]

Sodium Bisulfite. Sodium bisulfite [7631-90-5] NaHSO, is occasionally used to perform simultaneous reduction of a nitro group to an amine and the addition of a sulfonic acid group. For example, 4-amino-3-hydroxyl-l-naphthalenesulfonic acid [116-63-2] C qH NO S, is manufactured from 2-naphthol in a process which uses sodium bisulfite (59). The process involves nitrosation of 2-naphthol in aqueous medium, followed by addition of sodium bisulfite and acidification with sulfuric acid. [Pg.263]

There are three main uses for naphthalene sulfonic acid derivatives (75—79) as naphthalenic tanning material alkyl naphthalene sulfonates for industrial appHcations as nondetergent wetting agents and as dye intermediates. Consumption of naphthalene sulfonates as surfactants accounts for a large portion of usage. Naphthalene sulfonate—formaldehyde condensates are also used as concrete additives to enhance flow properties. Demand for naphthalene sulfonates in surfactants and dispersent appHcations, particularly in concrete, was expected to increase into the twenty-first century. Consumption as of 1995 was 16 x 10 kg/yr. [Pg.79]

Sulfonates for Lube Additives. Most petroleum sulfonates used as lube additives are based on calcium or magnesium salts. These salts can be produced by direct neutralization of the sulfonic acid with Ca(OH)2 or Mg(OH)2, or by use of a metathesis process involving the sodium salt ... [Pg.81]

In more recent times, naphthalene has been used in condensation products from naphthalene sulfonic acids, utili2ing formaldehyde as additives to improve the flow properties of concrete these are referred to as superplastici2ers. Another newer appHcation is the production of diisopropylnaphthalenes. The mutual depression of the melting points in the mixture gives a Hquid which is used as a solvent for dyes in the production of carbonless copy paper. [Pg.347]

Acid-Gatalyzed Synthesis. The acid-catalysed reaction of alkenes with hydrogen sulfide to prepare thiols can be accompHshed using a strong acid (sulfuric or phosphoric acid) catalyst. Thiols can also be prepared continuously over a variety of soHd acid catalysts, such as seoHtes, sulfonic acid-containing resin catalysts, or aluminas (22). The continuous process is utilised commercially to manufacture the more important thiols (23,24). The acid-catalysed reaction is commonly classed as a Markownikoff addition. Examples of two important industrial processes are 2-methyl-2-propanethiol and 2-propanethiol, given in equations 1 and 2, respectively. [Pg.10]

Methane sulfonic acid, trifluoroacetic acid, hydrogen iodide, and other Brmnsted acids can faciUtate 3 -acetoxy displacement (87,173). Displacement yields can also be enhanced by the addition of inorganic salts such as potassium thiocyanate and potassium iodide (174). Because initial displacement of the acetoxy by the added salt does not appear to occur, the role of these added salts is not clear. Under nonaqueous conditions, boron trifluoride complexes of ethers, alcohols, and acids also faciUtate displacement (87,175). [Pg.32]

The azo coupling reaction proceeds by the electrophilic aromatic substitution mechanism. In the case of 4-chlorobenzenediazonium compound with l-naphthol-4-sulfonic acid [84-87-7] the reaction is not base-catalyzed, but that with l-naphthol-3-sulfonic acid and 2-naphthol-8-sulfonic acid [92-40-0] is moderately and strongly base-catalyzed, respectively. The different rates of reaction agree with kinetic studies of hydrogen isotope effects in coupling components. The magnitude of the isotope effect increases with increased steric hindrance at the coupler reaction site. The addition of bases, even if pH is not changed, can affect the reaction rate. In polar aprotic media, reaction rate is different with alkyl-ammonium ions. Cationic, anionic, and nonionic surfactants can also influence the reaction rate (27). [Pg.428]


See other pages where Sulfonic acids, addition is mentioned: [Pg.76]    [Pg.73]    [Pg.238]    [Pg.76]    [Pg.73]    [Pg.238]    [Pg.137]    [Pg.244]    [Pg.393]    [Pg.134]    [Pg.178]    [Pg.489]    [Pg.359]    [Pg.252]    [Pg.70]    [Pg.257]    [Pg.44]    [Pg.272]    [Pg.80]    [Pg.80]    [Pg.81]    [Pg.83]    [Pg.86]    [Pg.86]    [Pg.103]    [Pg.267]    [Pg.60]   


SEARCH



Hydroxylamine-O-sulfonic acid, addition to cyclohexanone

Sulfones additions

Sulfonic acid esters synthesis with addition

Sulfonic acids, addition alkenes

Sulfonic acids, addition compounds

Sulfonic acids, addition derivatives

Sulfonic acids, addition halides

Sulfonic acids, addition hydrocarbons

Sulfonic acids, addition reaction

Sulfonic acids, addition with ethers

With additional coordinating groups Sulfonic acid

© 2024 chempedia.info