Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfone coupling reaction

Lithiation at C2 can also be the starting point for 2-arylatioii or vinylation. The lithiated indoles can be converted to stannanes or zinc reagents which can undergo Pd-catalysed coupling with aryl, vinyl, benzyl and allyl halides or sulfonates. The mechanism of the coupling reaction involves formation of a disubstituted palladium intermediate by a combination of ligand exchange and oxidative addition. Phosphine catalysts and salts are often important reaction components. [Pg.98]

The azo coupling reaction proceeds by the electrophilic aromatic substitution mechanism. In the case of 4-chlorobenzenediazonium compound with l-naphthol-4-sulfonic acid [84-87-7] the reaction is not base-catalyzed, but that with l-naphthol-3-sulfonic acid and 2-naphthol-8-sulfonic acid [92-40-0] is moderately and strongly base-catalyzed, respectively. The different rates of reaction agree with kinetic studies of hydrogen isotope effects in coupling components. The magnitude of the isotope effect increases with increased steric hindrance at the coupler reaction site. The addition of bases, even if pH is not changed, can affect the reaction rate. In polar aprotic media, reaction rate is different with alkyl-ammonium ions. Cationic, anionic, and nonionic surfactants can also influence the reaction rate (27). [Pg.428]

Diazophenols, ie, o-hydroxyaryldiazonium salts, couple to 1-naphthol in weaMy basic solution primarily in the para position, but as the hydroxyl ion concentration is increased, formation of the ortho isomer is favored and is frequentiy the sole product. Pyridine and pyridine derivatives, urea, and acetate, etc, used as buffers can also catalyze azo coupling reactions (28). l-amino-2-naphthol-4-sulfonic acid [116-63-2] (1,2,4-acid) and 1-naphthol yield the important Eriochrome Black A [3564-14-5] (18a, R = H) (Cl Mordant Black 3 Cl 14640) which is reportedly (20) a mixture of ortho and para isomers. [Pg.428]

The best source of information on preparative aspects of coupling reactions is still the book of Fierz and Blangey (1952). Four examples of coupling reactions can be found in Organic Syntheses (Conant et al., 1941, and Fieser, 1943 Azo coupling with 1- and 2-naphthol Hartwell and Fieser, 1943 8-Hydroxy-l-naphthylamine-2,4-di-sulfonic acid Clarke and Kirner, 1941 A/,7V-Dimethylaniline). [Pg.308]

In addition to protons, other electrofugic leaving groups such as SO3 (i. e., anions of sulfonic acids), Cl, Br, I, C02, and others can also be displaced in azo coupling reactions with aromatic substrates. The mechanism of such substitutions is in principle the same as that of dehydrogenation (see Fischer and Zollinger, 1972). [Pg.319]

Besides the azo coupling reactions of 1-methyl- and 2,5-dimethylpyrrole with benzenediazonium-4-sulfonate mentioned above, Butler et al. (1977) synthesized almost all possible combination products of the unsubstituted and four 4-substituted benzenediazonium ions with pyrrole itself, with most isomeric mono-, di-, and trimethyl-pyrroles, and with 3-ethyl-2,4-dimethylpyrrole. These authors also investigated the kinetics of all these combinations (see Sec. 12.7). [Pg.323]

Bagal et al. (1975) investigated in more detail the role of donor-acceptor complexes in the azo coupling reaction of the 4-nitrobenzenediazonium ion with 2-naphthylamine-3,6-disulfonic acid and that of the 4-chlorobenzenediazonium ion with 2-naphthol-6-sulfonic acid. Their kinetic results are, as would be expected, compatible with the mechanisms shown in Schemes 12-74 or 12-75. [Pg.365]

The overall mechanism of the substitution proper in azo coupling reactions can be summarized as shown in Scheme 12-83. This scheme is simplified, insofar as charges in the coupling component and additional charges (e.g., of sulfonate groups) in the diazo compound are neglected, and it does not include information on reversibility. [Pg.370]

Micellar catalysis of azo coupling reactions was first studied by Poindexter and McKay (1972). They investigated the reaction of a 4-nitrobenzenediazonium salt with 2-naphthol-6-sulfonic and 2-naphthol-3,6-disulfonic acid in the presence of sodium dodecylsulfate or hexadecyltrimethylammonium bromide. With both the anionic and cationic additives an inhibition (up to 15-fold) was observed. This result was to be expected on the basis of the principles of micellar catalysis, since the charges of the two reacting species are opposite. This is due to the fact that either of the reagents will, for electrostatic reasons, be excluded from the micelle. [Pg.376]

TABLE 3. Cross-coupling reaction of vinyl sulfones with Grignard reagents12 ... [Pg.764]

The general approaches for the synthesis of poly(arylene ether)s include electrophilic aromatic substitution, nucleophilic aromatic substitution, and metal-catalyzed coupling reactions. Poly(arylene ether sulfone)s and poly(arylene ether ketone)s have quite similar structures and properties, and the synthesis approaches are quite similar in many respects. However, most of the poly(arylene ether sul-fone)s are amorphous while some of the poly(arylene ether)s are semicrystalline, which requires different reaction conditions and approaches to the synthesis of these two polymer families in many cases. In the following sections, the methods for the synthesis of these two families will be reviewed. [Pg.329]

Other coupling reactions were also employed to prepare poly(arylene etherjs. Polymerization of bis(aryloxy) monomers was demonstrated to occur in the presence of an Fe(III) chloride catalyst via a cation radical mechanism (Scholl reaction).134 This reaction also involves carbon-carbon bond formation and has been used to prepare soluble poly(ether sulfone)s, poly(ether ketone)s, and aromatic polyethers. [Pg.347]

Microwave and fluorous technologies have been combined in the solution phase parallel synthesis of 3-aminoimidazo[l,2-a]pyridines and -pyrazines [63]. The three-component condensation of a perfluorooctane-sulfonyl (Rfs = CgFiy) substituted benzaldehyde by microwave irradiation in a single-mode instrument at 150 °C for 10 min in CH2CI2 - MeOH in the presence of Sc(OTf)3 gave the imidazo-annulated heterocycles that could be purified by fluorous solid phase extraction (Scheme 9). Subsequent Pd-catalyzed cross-coupling reactions of the fluorous sulfonates with arylboronic acids or thiols gave biaryls or aryl sulfides, respectively, albeit it in relatively low yields. [Pg.40]


See other pages where Sulfone coupling reaction is mentioned: [Pg.659]    [Pg.98]    [Pg.76]    [Pg.426]    [Pg.427]    [Pg.266]    [Pg.503]    [Pg.142]    [Pg.157]    [Pg.319]    [Pg.347]    [Pg.360]    [Pg.361]    [Pg.376]    [Pg.654]    [Pg.764]    [Pg.1070]    [Pg.112]    [Pg.182]    [Pg.276]    [Pg.123]    [Pg.601]    [Pg.298]    [Pg.654]    [Pg.764]    [Pg.1070]    [Pg.212]    [Pg.228]   
See also in sourсe #XX -- [ Pg.4 , Pg.526 , Pg.528 ]

See also in sourсe #XX -- [ Pg.4 , Pg.526 , Pg.528 ]




SEARCH



Reaction sulfonates

Sulfonation reaction

Sulfone coupling

© 2024 chempedia.info