Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subsurface water volume

A combination of adhesion and surface tension gives rise (pardon the pun) to capillary action. By its adhesion to the solid surface of the soil particles, the water wants to cover as much solid surface as possible. However, by the effect of surface tension, the water molecules adhering to the solid surface are connected with a surface him in which the stresses cannot exceed the surface tension. As water is attracted to the soil particles by adhesion, it will rise upward until attractive forces balance the pull of gravity (Figure 3.28). Smaller-diameter tubes force the air-water surface into a smaller radius, with a lower solid-surface-to-volume ratio, which results in a greater capillary force. Typical heights of capillary rise for several soil types are presented in Table 3.9. The practical relationship between normal subsurface water and capillary rise is presented in the following equation. [Pg.82]

Contaminants may reach the subsurface in a gaseous phase, dissolved in water, as an immiscible hquid, or as suspended particles. Contaminant partitioning in the subsurface is controlled by the physicochemical properties and the porosity of the earth materials, the composition of the subsurface water, as well as the properties of the contaminants themselves. While the physicochemical and mineralogical characteristics of the subsurface sohd phase define the retention capacity of contaminants, the porosity and aggregation stams determine the potential volume of liquid and air that are accessible for contaminant redistribution among the subsurface phases. Enviromnental factors, such as temperature and water content in the subsurface prior to contamination, also affect the pollution pattern. [Pg.92]

Land (1987) has reviewed and discussed theories for the formation of saline brines in sedimentary basins. We will summarize his major relevant conclusions here. He points out that theories for deriving most brines from connate seawater, by processes such as shale membrane filtration, or connate evaporitic brines are usually inadequate to explain their composition, volume and distribution, and that most brines must be related, at least in part, to the interaction of subsurface waters with evaporite beds (primarily halite). The commonly observed increase in dissolved solids with depth is probably largely the result of simple "thermo-haline" circulation and density stratification. Also many basins have basal sequences of evaporites in them. Cation concentrations are largely controlled by mineral solubilities, with carbonate and feldspar minerals dominating so that Ca2+ must exceed Mg2+, and Na+ must exceed K+ (Figures 8.8 and 8.9). Land (1987) hypothesizes that in deep basins devolatilization reactions associated with basement metamorphism may also provide an important source of dissolved components. [Pg.382]

Currents transport, or advect, the oil from a spill site. Oil slicks travel downwind at 2.5. 0% of the wind velocity (Kennish, 1999). Light oils spread faster than heavy oils. The spreading rate is more rapid at higher than lower temperatures and depends on the volume and density of the oil. As wind and wind waves develop, the slick breaks up into distinct patches of oil that drift slowly apart by horizontal eddy diffusion. Subsurface advection mixes the oil in subsurface waters to depths of about 10 m vertical diffusion plays a less integral role in subsurface mixing of the oil. [Pg.229]

Phase fractionation. In a simple two-phase system, the recipient phase equilibrating with the groundwater will be the sampled oil or gas. The magnitude of fractionation in the oil or gas from the original groundwater values will therefore be controlled by the equilibrium solubility law (Eqns. 20, and 22) and reflect the subsurface conditions of temperature, water salinity and gas/water or oil/water volume ratio. The most uncertainty... [Pg.567]

For a given set of conditions (lithology, climate, slope, etc.), there is presumably an optimum soil thickness that maximizes the rate of bedrock weathering (Fig. 9-3) (Carson and Kirkby, 1972 Stallard, 1985). For less than optimum soil thicknesses, there is insufficient pore volume in the soil to accept all the water supplied by precipitation and downhill flow. Excess water runs off and does not interact with the subsurface soil and bedrock. In contrast, water infiltrates and circulates slowly through thick soils (especially where forested If profile thicknesses greatly... [Pg.203]

The layers of sediment at the Martian south pole do not consist of pure ice they are interspersed by layers of dust. The latest data were obtained by the Mars Advanced Radar for Subsurface and Ionospheric Sounding apparatus (MARSIS) on board the Mars Express Orbiter. The radar waves from the instrument pass through the ice layers until they reach the base layer, which can be at a depth of up to 3.7 km. The distribution of the ice at the south pole is asymmetric, and its total volume has been estimated to be 1.6 x 106km3 this corresponds to an amount of water which would cover the whole planet with a layer 11 metres deep (Plaut et al., 2007). [Pg.286]

All voids in the subsurface medium are classified as porosity. When pore spaces are interconnected so that water can flow between them, the medium is said to be permeable. The actual openings that permit water flow are referred to as effective porosity. Effective porosity is calculated as the ratio of the void spaces through which water flow can occur to the bulk volume of the medium (expressed as a percentage) as follows ... [Pg.57]

The recoverability of hydrocarbon from the subsurface refers to the amount of mobile hydrocarbon available. Hydrocarbon that is retained in the unsaturated zone is not typically recoverable by conventional means. Additional amounts of hydrocarbon that are unrecoverable by conventional methods include the immobile hydrocarbons associated with the water table capillary zone. Residual hydrocarbon is pellicular or insular, and is retained in the aquifer matrix. With respect to recoverability, residual hydrocarbon entrapment can result in volume estimate discrepancies as well as decreases in recovery efficiency. With increasing water saturation, such as when the water table rises via recharge or product removal, hydrocarbons essentially become occluded by a continuous water phase. This results in a reduction of LNAPL and product thickness as measured in the well at constant volume. When water saturation is decreased by lowering the water table (as during recovery operations), trapped hydrocarbons can remobilize, leading to increased recoverability. [Pg.196]

Soil Gas The minmum 02 concentration that can support aerobic metabolism in unsaturated soil is approximately 1%. 02 diffuses into soil because of pressure gradients, and CO 2 moves out of soil because of diffusivity gradients. Excess water restricts the movement of 02 into and through the soil. A minimum air-filled pore volume of 10% is considered adequate for aeration. Soil gas surveys using a mobile geoprobe unit have become a valuable tool to demonstrate a zone of enhanced microbial metabolism in the subsurface. [Pg.413]


See other pages where Subsurface water volume is mentioned: [Pg.361]    [Pg.22]    [Pg.57]    [Pg.626]    [Pg.413]    [Pg.361]    [Pg.361]    [Pg.2649]    [Pg.2705]    [Pg.644]    [Pg.603]    [Pg.46]    [Pg.567]    [Pg.864]    [Pg.117]    [Pg.701]    [Pg.298]    [Pg.539]    [Pg.272]    [Pg.47]    [Pg.356]    [Pg.182]    [Pg.458]    [Pg.118]    [Pg.114]    [Pg.799]    [Pg.1013]    [Pg.1047]    [Pg.327]    [Pg.427]    [Pg.323]    [Pg.81]    [Pg.851]    [Pg.132]    [Pg.133]    [Pg.167]    [Pg.171]    [Pg.210]    [Pg.451]    [Pg.205]   
See also in sourсe #XX -- [ Pg.178 ]




SEARCH



Subsurface

Subsurface waters

© 2024 chempedia.info