Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substrates presence

Nevertheless, it appears from the literature that no general rules for the effect of solvent on enantioselectivity of enzymes can be established, and that the effect of other parameters having an influence on enantioselectivity (temperature, type of substrates, presence of water, etc.) are linked together and may modify the effect of solvents. [Pg.264]

In serine proteases the hydrogen bonds between Asp and the His of the catalytic triad is normally weak. At the substrate presence the histidine becomes unusually protonated and a LBHB forms between Asp and His. The LBHB formation is proven by the low field... [Pg.69]

The two methods for synthesis of copper nanoparticles in dielectric matrices by the hydrogen reduction of copper ions are shown within the Cu-doped silica sol-gel films and the hybrid Cu-zeolite-silica sol-gel optical materials on transparent substrate. Presence of zeolite microcrystals witin sol-gel films gives more flexibility in variation of copper nanoparticle preparation. Optical features of copper nanoparticles in these systems are determined by their size and properties of surrounding medium and presented as the plasmon resonance band with different line profile. [Pg.345]

The pyroelectric coefficient distribution for 1,000 nm thick PZT film is reported in Fig. 2.19. One can see that it varies abruptly over the film thickness the profile is asymmetric due to the substrate presence on the only one surface. The plateau (indicating the corresponding bulk value) in the film central part is narrower than that for refraction index. The difference could be the result of higher sensitivity of pyroelectric properties to the surface influence (for instance due to the higher order pyroelectric effects contribution, see above) as well as due to different accuracy of n and O measurements. [Pg.51]

Because of the charged nature of many Langmuir films, fairly marked effects of changing the pH of the substrate phase are often observed. An obvious case is that of the fatty-acid monolayers these will be ionized on alkaline substrates, and as a result of the repulsion between the charged polar groups, the film reverts to a gaseous or liquid expanded state at a much lower temperature than does the acid form [121]. Also, the surface potential drops since, as illustrated in Fig. XV-13, the presence of nearby counterions introduces a dipole opposite in orientation to that previously present. A similar situation is found with long-chain amines on acid substrates [122]. [Pg.557]

The desire to understand catalytic chemistry was one of the motivating forces underlying the development of surface science. In a catalytic reaction, the reactants first adsorb onto the surface and then react with each other to fonn volatile product(s). The substrate itself is not affected by the reaction, but the reaction would not occur without its presence. Types of catalytic reactions include exchange, recombination, unimolecular decomposition, and bimolecular reactions. A reaction would be considered to be of the Langmuir-Hinshelwood type if both reactants first adsorbed onto the surface, and then reacted to fonn the products. If one reactant first adsorbs, and the other then reacts with it directly from the gas phase, the reaction is of the Eley-Ridel type. Catalytic reactions are discussed in more detail in section A3.10 and section C2.8. [Pg.302]

Surface photochemistry can drive a surface chemical reaction in the presence of laser irradiation that would not otherwise occur. The types of excitations that initiate surface photochemistry can be roughly divided into those that occur due to direct excitations of the adsorbates and those that are mediated by the substrate. In a direct excitation, the adsorbed molecules are excited by the laser light, and will directly convert into products, much as they would in the gas phase. In substrate-mediated processes, however, the laser light acts to excite electrons from the substrate, which are often referred to as hot electrons . These hot electrons then interact with the adsorbates to initiate a chemical reaction. [Pg.312]

If tire coupling to tire substrate is weak (physisorjDtion), as is tire case for alkylsiloxanes on a SiO surface in tire presence of a water layer, for example, tire packing may also be mainly driven by intennolecular forces. Stability in tliis system is provided by crosslinking between tire molecules (see below). [Pg.2622]

At potentials positive to the bulk metal deposition, a metal monolayer-or in some cases a bilayer-of one metal can be electrodeposited on another metal surface this phenomenon is referred to as underiDotential deposition (upd) in the literature. Many investigations of several different metal adsorbate/substrate systems have been published to date. In general, two different classes of surface stmetures can be classified (a) simple superstmetures with small packing densities and (b) close-packed (bulklike) or even compressed stmetures, which are observed for deposition of the heavy metal ions Tl, Hg and Pb on Ag, Au, Cu or Pt (see, e.g., [63, 64, 65, 66, 62, 68, 69 and 70]). In case (a), the metal adsorbate is very often stabilized by coadsorbed anions typical representatives of this type are Cu/Au (111) (e.g. [44, 45, 21, 22 and 25]) or Cu/Pt(l 11) (e.g. [46, 74, 75, and 26 ]) It has to be mentioned that the two dimensional ordering of the Cu adatoms is significantly affected by the presence of coadsorbed anions, for example, for the upd of Cu on Au(l 11), the onset of underiDotential deposition shifts to more positive potentials from 80"to Br and CE [72]. [Pg.2753]

The attack by a reagent of a molecule might be hampered by the presence of other atoms near the reaction site. The larger these atoms and the more are there, the higher is the geometric restriction, the steric hindrance, on reactivity. Figure 3-6e illustrates this for the attack of a nucleophile on the substrate in a nucleophilic aliphatic substitution reaction. [Pg.178]

This enzyme, sometimes also called the Schardinger enzyme, occurs in milk. It is capable of " oxidising" acetaldehyde to acetic acid, and also the purine bases xanthine and hypoxanthine to uric acid. The former reaction is not a simple direct oxidation and is assumed to take place as follows. The enzyme activates the hydrated form of the aldehyde so that it readily parts w ith two hydrogen atoms in the presence of a suitable hydrogen acceptor such as methylene-blue the latter being reduced to the colourless leuco-compound. The oxidation of certain substrates will not take place in the absence of such a hydrogen acceptor. [Pg.521]

Studies of micellar catalysis of himolecular reactions of uncharged substrates have not been frequent" ". Dougherty and Berg performed a detailed analysis of the kinetics of the reaction of 1-fluoro-2,4-dinitrobenzene with aniline in the presence of anionic and nonionic surfactants. Micelles induce increases in the apparent rate constant of this reaction. In contrast, the second-order rate constant for reaction in the micellar pseudophase was observed to be roughly equal to, or even lower than the rate constant in water. [Pg.131]

Allylation under basic conditions. Allylation can be carried out under basic conditions with allylic acetates and phosphates, and under neutral conditions with carbonates and vinyloxiranes. The allylations under neutral conditions are treated separately in Section 2.2.2.1 from those under basic conditions. However, in some cases, allylations of the same substrates are carried out under both basic and neutral conditions to give similar results. These reactions are treated together in this section for convenience. Allylic acetates are widely used for Pd-catalyzed allylation in the presence of bases tertiary amines or NaH are commonly used[6,7,4l]. As a base, basic alumina or ICF on alumina is conveniently used, because it is easy to remove by filtration after the reaction[42]. Allyl phosphates are more reactive than acetates. The allylation with 40 proceeds stepwise. At first allylic phosphate reacts with malonate and then allylic acetate reacts with amine to give 41(43]. [Pg.298]

The (thermal) decomposition of thiazol-2-yldiazonium salts in a variety of solvents at 0 C in presence of alkali generates thiazol-2-yl radicals (413). The same radicals result from the photolysis in the same solvents of 2-iodothiazole (414). Their electrophilic character is shown by their ability to attack preferentially positions of high rr-electron density of aromatic substrates in which they are generated (Fig. 1-21). The major... [Pg.111]

Emulsion polymerization also has the advantages of good heat transfer and low viscosity, which follow from the presence of the aqueous phase. The resulting aqueous dispersion of polymer is called a latex. The polymer can be subsequently separated from the aqueous portion of the latex or the latter can be used directly in eventual appUcations. For example, in coatings applications-such as paints, paper coatings, floor pohshes-soft polymer particles coalesce into a continuous film with the evaporation of water after the latex has been applied to the substrate. [Pg.403]

Triazines pose rather more of a problem, probably because the carbons are in an effectively oxidized state so that no metaboHc energy is obtained by their metaboHsm. Very few pure cultures of microorganisms are able to degrade triazines such as Atrazine, although some Pseudomonads are able to use the compound as sole source of nitrogen in the presence of citrate or other simple carbon substrates. The initial reactions seem to be the removal of the ethyl or isopropyl substituents on the ring (41), followed by complete mineralization of the triazine ring. [Pg.34]

Stereoselective All lations. Ben2ene is stereoselectively alkylated with chiral 4-valerolactone in the presence of aluminum chloride with 50% net inversion of configuration (32). The stereoselectivity is explained by the coordination of the Lewis acid with the carbonyl oxygen of the lactone, resulting in the typ displacement at the C—O bond. Partial racemi2ation of the substrate (incomplete inversion of configuration) results by internal... [Pg.553]

Ion implantation (qv) has a large (10 K/s) effective quench rate (64). This surface treatment technique allows a wide variety of atomic species to be introduced into the surface. Sputtering and evaporation methods are other very slow approaches to making amorphous films, atom by atom. The processes involve deposition of a vapor onto a cold substrate. The buildup rate (20 p.m/h) is also sensitive to deposition conditions, including the presence of impurity atoms which can faciUtate the formation of an amorphous stmcture. An approach used for metal—metalloid amorphous alloys is chemical deposition and electro deposition. [Pg.337]

Butane LPO conducted in the presence of very high concentrations of cobalt catalyst has been reported to have special character (2,205,217—219). It occurs under mild conditions with reportedly high efficiency to acetic acid. It is postulated to involve the direct attack of Co(III) on the substrate. Various additives, including methyl ethyl ketone, -xylene, or water, are claimed to be useful. [Pg.343]

Acetylene is condensed with carbonyl compounds to give a wide variety of products, some of which are the substrates for the preparation of families of derivatives. The most commercially significant reaction is the condensation of acetylene with formaldehyde. The reaction does not proceed well with base catalysis which works well with other carbonyl compounds and it was discovered by Reppe (33) that acetylene under pressure (304 kPa (3 atm), or above) reacts smoothly with formaldehyde at 100°C in the presence of a copper acetyUde complex catalyst. The reaction can be controlled to give either propargyl alcohol or butynediol (see Acetylene-DERIVED chemicals). 2-Butyne-l,4-diol, its hydroxyethyl ethers, and propargyl alcohol are used as corrosion inhibitors. 2,3-Dibromo-2-butene-l,4-diol is used as a flame retardant in polyurethane and other polymer systems (see Bromine compounds Elame retardants). [Pg.393]

Gate oxide dielectrics are a cmcial element in the down-scaling of n- and -channel metal-oxide semiconductor field-effect transistors (MOSEETs) in CMOS technology. Ultrathin dielectric films are required, and the 12.0-nm thick layers are expected to shrink to 6.0 nm by the year 2000 (2). Gate dielectrics have been made by growing thermal oxides, whereas development has turned to the use of oxide/nitride/oxide (ONO) sandwich stmctures, or to oxynitrides, SiO N. Oxynitrides are formed by growing thermal oxides in the presence of a nitrogen source such as ammonia or nitrous oxide, N2O. Oxidation and nitridation are also performed in rapid thermal processors (RTP), which reduce the temperature exposure of a substrate. [Pg.348]


See other pages where Substrates presence is mentioned: [Pg.1210]    [Pg.57]    [Pg.4389]    [Pg.1210]    [Pg.57]    [Pg.4389]    [Pg.252]    [Pg.245]    [Pg.381]    [Pg.1206]    [Pg.2502]    [Pg.2751]    [Pg.2845]    [Pg.2938]    [Pg.194]    [Pg.522]    [Pg.47]    [Pg.76]    [Pg.164]    [Pg.2]    [Pg.130]    [Pg.388]    [Pg.454]    [Pg.512]    [Pg.5]    [Pg.639]    [Pg.641]    [Pg.35]    [Pg.442]    [Pg.253]    [Pg.254]    [Pg.314]    [Pg.147]   
See also in sourсe #XX -- [ Pg.73 , Pg.74 , Pg.76 , Pg.77 ]




SEARCH



© 2024 chempedia.info