Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject versatility

Two main operational variables that differentiate the flotation of finely dispersed coUoids and precipitates in water treatment from the flotation of minerals is the need for quiescent pulp conditions (low turbulence) and the need for very fine bubble sizes in the former. This is accompHshed by the use of electroflotation and dissolved air flotation instead of mechanically generated bubbles which is common in mineral flotation practice. Electroflotation is a technique where fine gas bubbles (hydrogen and oxygen) are generated in the pulp by the appHcation of electricity to electrodes. These very fine bubbles are more suited to the flotation of very fine particles encountered in water treatment. Its industrial usage is not widespread. Dissolved air flotation is similar to vacuum flotation. Air-saturated slurries are subjected to vacuum for the generation of bubbles. The process finds limited appHcation in water treatment and in paper pulp effluent purification. The need to mn it batchwise renders it less versatile. [Pg.52]

Perfluoroepoxid.es were first prepared ia the late 1950s by Du Pont Co. Subsequent work on these compounds has taken place throughout the world and is the subject of a number of reviews (1 5). The main use of these epoxides is as intermediates in the preparation of other fluorinated monomers. Although the polymerisation of the epoxides has been described (6—12), the resulting homopolymers and their derivatives are not significant commercial products. Almost all the work on perfluoroepoxides has been with three compounds tetrafluoroethylene oxide (TFEO), hexafluoropropylene oxide (HFPO), and perfluoroisobutylene oxide (PIBO). Most of this work has dealt with HFPO, the most versatile and by far the most valuable of this class of materials (4). [Pg.301]

The diacids are characterized by two carboxyHc acid groups attached to a linear or branched hydrocarbon chain. AUphatic, linear dicarboxyhc acids of the general formula HOOC(CH2) COOH, and branched dicarboxyhc acids are the subject of this article. The more common aUphatic diacids (oxaUc, malonic, succinic, and adipic) as weU as the common unsaturated diacids (maleic acid, fumaric acid), the dimer acids (qv), and the aromatic diacids (phthaUc acids) are not discussed here (see Adipic acid Maleic anhydride, maleic acid, and fumaric acid Malonic acid and derivatives Oxalic acid Phthalic acid and OTHERBENZENE-POLYCARBOXYLIC ACIDS SucciNic ACID AND SUCCINIC ANHYDRIDE). The bihinctionahty of the diacids makes them versatile materials, ideally suited for a variety of condensation polymerization reactions. Several diacids are commercially important chemicals that are produced in multimillion kg quantities and find appHcation in a myriad of uses. [Pg.60]

In the introduction to this chapter, MD-PC was defined as a procedure in which substances to be separated were subjected to at least two separation steps with different mechanisms of retention (5). Discussion of the basic potential modes of operation showed that because of the versatility which resulted from being able to combine mobile phases of different composition, more than two development steps can easily be realized by the use of "D techniques. [Pg.191]

Twin-bed DI often ceases to be economical when TDS levels begin to climb, and it can be subject to bacterial infection and resin fouling. Also, there are cost and safety issues associated with chemical regenerant storage, consumption, and discharge. As a technology, however, DI provides the widest possible versatility. [Pg.344]

Corey and Chaykovsky had discovered that dimethyl sulfoxide is converted to methyl-sulfinyl carbanion upon treatment with sodium hydride114 and that this conjugate base of DMSO reacts with various electrophiles115. This finding has opened up various reactions with a-sulfmyl carbanions derived from sulfoxides, since the sulfinyl function can be removed either by thermolysis or by subjecting the compound to reductive desulfurization. Thus a-sulfmyl carbanions have become versatile synthetically useful reagents. [Pg.606]

Returning now to the subject of the chapter, in addition to appropriate retentive characteristics, a potential stationary phase must have other key physical characteristics before it can be considered suitable for use in LC. It is extremely important that the stationary phase is completely insoluble (or virtually so) in all solvents that are likely to be used as a mobile phase. Furthermore, it must be insensitive to changes in pH and be capable of assuming the range of interactive characteristics that are necessary for the retention of all types of solutes. In addition, the material must be available as solid particles a few microns in diameter, so that it can be packed into a column and at the same time be mechanically strong enough to sustain bed pressures of 6,000 p.s.i. or more. It is clear that the need for versatile interactive characteristics, virtually universal solvent insolubility together with other critical physical characteristics severely restricts the choice of materials suitable for LC stationary phases. [Pg.54]

With the ArH ArTlX2 Arl reaction sequence available as a rapid and reliable probe for aromatic thallation, a detailed study was undertaken of the various factors affecting orientation in this electrophilic metallation process (153). The results, which are summarized below, demonstrate that aromatic thallation is subject to an almost unprecedented degree of orientation control coupled with the ease with which thallium can then be displaced by other substitutent groups (this aspect of the synthetic exploitation of aromatic thallation is discussed in detail below), the sequential processes of thallation followed by displacement represent a new and versatile method for aromatic substitution which both rivals and complements the classic Sandmeyer reaction. [Pg.165]

Protein phosphorylation-dephosphorylation is a highly versatile and selective process. Not all proteins are subject to phosphorylation, and of the many hydroxyl groups on a protein s surface, only one or a small subset are targeted. While the most common enzyme function affected is the protein s catalytic efficiency, phosphorylation can also alter the affinity for substrates, location within the cell, or responsiveness to regulation by allosteric ligands. Phosphorylation can increase an enzyme s catalytic efficiency, converting it to its active form in one protein, while phosphorylation of another converts it into an intrinsically inefficient, or inactive, form (Table 9—1). [Pg.78]

The most sophisticated techniques require time-resolved measurements (lifetime, anisotropy, spectra) either in the time or frequency domain ([6-10] for a focused journal issue on the subject see [11]). Thus, the significance of new, versatile, commercially available light... [Pg.492]

The chemistry of diazines remains an area of intense interest, both academic and industrial, with applications in many areas, from biomedical to materials science and electronics. They are versatile, having very varied reactivity, giving many opportunities for manipulation of substituents. Nucleophilic substitutions, electrophilic substitution in oxy and amino derivatives, organometallic and transition metal-catalysed coupling reactions are all subjects of substantial research effort. There are obvious similarities in reactivity of the three diazine systems but also many interesting and practically important, often subtle, differences. [Pg.383]

This section diverges from the main subject but, being studied together with the insertion of (phenylthio)carbenes with alkoxides, is worth describing here due to its synthetic versatility as C-C bond forming reactions. [Pg.309]

Ion traps are favored for proteomics studies because of their ability to perform multistage mass analysis (MSn), thereby increasing the structural information obtained from molecules. Ion traps, however, do not provide information for ions that have lower mass-to-charge values (the one-third rule). Additionally, the sensitivity of ion traps can also be limiting because only about 50% of the ions within a trap are ejected to the detector. Ion traps are also subject to a space charging phenomenon that may occur when the concentration of ions in the trap is high and produces ion repulsion within the trap. Nevertheless, the versatility and robustness of ion trap MS underlies its popularity for several proteomics-related applications. [Pg.383]

This review would give a brief survey of the literature concerning the synthetic application of cyclobutanes published mainly during 1975 to 1983. Due to the enormity of research efforts in this field, we do not intend to provide a thorough account of this subject, but would only try to present some representative research works which conclusively demonstrate the versatility of cyclobutane derivatives in synthetic organic chemistry. [Pg.89]

The hydrolysis of racemic non-natural amides has led to useful products and intermediates for the fine chemical industry. Thus hydrolysis of the racemic amide (2) with an acylase in Rhodococcus erythrolpolis furnished the (S)-acid (the anti-inflammatory agent Naproxen) in 42 % yield and > 99 % enantiomeric excess1201. Obtaining the 7-lactam (—)-(3) has been the subject of much research and development effort, since the compound is a very versatile synthon for the production of carbocyclic nucleosides. An acylase from Comamonas acidovor-ans has been isolated, cloned and overexpressed. The acylase tolerates a 500 g/ litre input of racemic lactam, hydrolyses only the (+)-enantiomer leaving the desired intermediate essentially optically pure (E > 400)[211. [Pg.10]

The power of Muchowski s method is seen by the fact that these bromopyrroles can be subjected to bromine-lithium exchange to afford the versatile 3-lithio species that can be quenched with a variety of electrophiles in good to excellent yields [18-21]. This is illustrated by a synthesis of verrucarin E (11) [19]. [Pg.38]

Although electron microscopy is approached in this chapter as an analytical technique (a variant of XRF), it is essential to state at the outset that electron microscopy is far more versatile than this. Many standard descriptions of electron microscopy approach the subject from the microscopy end, regarding it as a higher resolution version of optical microscopy. Several texts, such as Goodhew et al. (2001), Reed (1993) and Joy et al. (1986), are devoted to the broad spectrum of analytical electron microscopy, but the emphasis here on the analytical capacity is justified in the context of a book on archaeological chemistry. [Pg.45]


See other pages where Subject versatility is mentioned: [Pg.660]    [Pg.139]    [Pg.515]    [Pg.306]    [Pg.179]    [Pg.144]    [Pg.295]    [Pg.434]    [Pg.607]    [Pg.21]    [Pg.75]    [Pg.51]    [Pg.80]    [Pg.30]    [Pg.78]    [Pg.75]    [Pg.417]    [Pg.166]    [Pg.483]    [Pg.253]    [Pg.620]    [Pg.586]    [Pg.224]    [Pg.117]    [Pg.401]    [Pg.382]    [Pg.3]    [Pg.1]    [Pg.7]    [Pg.131]    [Pg.815]    [Pg.332]    [Pg.175]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Versatile

Versatility

© 2024 chempedia.info