Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject steric

The rotation of one carbon-carbon bond around another—say, the (i + l)th around the ith in Fig. 1.5a—is subject to steric hindrance, so that not all values of

[Pg.55]

The effect substitution on the phenolic ring has on activity has been the subject of several studies (11—13). Hindering the phenolic hydroxyl group with at least one bulky alkyl group ia the ortho position appears necessary for high antioxidant activity. Neatly all commercial antioxidants are hindered ia this manner. Steric hindrance decreases the ability of a phenoxyl radical to abstract a hydrogen atom from the substrate and thus produces an alkyl radical (14) capable of initiating oxidation (eq. 18). [Pg.224]

Hydrolysis reactions involving tetrahedral intermediates are subject to steric and electronic effects. Electron-withdrawing substituents faciUtate, but electron-donating and bulky substituents retard basic hydrolysis. Steric effects in acid-cataly2ed hydrolysis are similar to those in base-cataly2ed hydrolysis, but electronic effects are much less important in acid-cataly2ed reactions. Higher temperatures also accelerate the reaction. [Pg.388]

It should be noted that when a BOC-protected amide is subjected to MeONa treatment the amide bond is cleaved in preference to the BOC group (85-96% yield) because of the difference in steric factors. The BOC group can be removed by the methods used to remove it from simple amines. [Pg.403]

In addition to constitution and configuration, there is a third important level of structure, that of conformation. Conformations are discrete molecular arrangements that differ in spatial arrangement as a result of facile rotations about single bonds. Usually, conformers are in thermal equilibrium and cannot be separated. The subject of conformational interconversion will be discussed in detail in Chapter 3. A special case of stereoisomerism arises when rotation about single bonds is sufficiently restricted by steric or other factors that- the different conformations can be separated. The term atropisomer is applied to stereoisomers that result fk m restricted bond rotation. ... [Pg.76]

The preference for endo attack in 7,7-dimethylnorbomene is certainly steric in origin, with the 7-methyl substituent shielding the exo direction of approach. The origin of the preferred exo-attack in norbomene is more subject to discussion. A purely steric explanation views the endo hydrogens at C—5 and C—6 as sterically shieldihg the endo approach. There probably is also a major torsional effect Comparison of the exo and endo modes of reproach shows that greater torsional strain develops in the endo mode of... [Pg.176]

Ionization reaction rates are subject to both electronic and steric effects. The most important electronic effects are stabilization of the carbocation by electron-releasing... [Pg.265]

The most satisfactory method of dehydrating 12a-alcohols appears to be through the sulfonate esters Engel and coworkers have shown (ref. 236 and ref. cited therein) that treatment of such sulfonates with alumina gives A -compounds. The reaction appears to be subject to steric acceleration in that bulky IToc-substituents and cw-fused A-rings aid elimination, and that yields increase with increasing size of the sulfonate employed. [Pg.330]

A decisive solvent effect is also observed with other a,/ -epoxy ketones. Specifically, 3jS-hydroxy-16a,17a-epoxypregn-5-en-20-one and its acetate do not react with thiocyanic acid in ether or chloroform. However, the corresponding thiocyanatohydrins are formed by heating an acetic acid solution of the epoxide and potassium thiocyanate. As expected, the ring opening reaction is subject to steric hindrance. For example, 3j6-acetoxy-14f ,15f5-epoxy-5) -card-20(22)-enoIide is inert to thiocyanic acid in chloroform, whereas the 14a,15a-epoxide reacts readily under these conditions.Reactions of 14a,15a-epoxides in the cardenolide series yields isothiocyanatohydrins, e.g., (135), in addition to the normal thiocyanatohydrin, e.g., (134). [Pg.40]

A few comments on the polar effects of the substituents reported in Tables IX—XI are now relevant. With the exception of 4-chloro-5-nitroquinoline (see Section IV, C, l,c), they involve only positions not subject to primary steric effects. The relations to the reaction center are of the conjugative cata, amphi) as well as of the non-conjugative class meta, epi, pros) as shown in Chart 3 by structures 45 and 46. [Pg.331]

The scope of heteroaryne or elimination-addition type of substitution in aromatic azines seems likely to be limited by its requirement for a relatively unactivated leaving group, for an adjacent ionizable substituent or hydrogen atom, and for a very strong base. However, reaction via the heteroaryne mechanism may occur more frequently than is presently appreciated. For example, it has been recently shown that in the reaction of 4-chloropyridine with lithium piperidide, at least a small amount of aryne substitution accompanies direct displacement. The ratio of 4- to 3-substitution was 996 4 and, therefore, there was 0.8% or more pyridyne participation. Heteroarynes are undoubtedly subject to orientation and steric effects which frequently lead to the overwhelming predominance of... [Pg.152]

Dimerization is markedly subject to steric hindrance, thus, whereas 3-n-propylindole dimerizes readily, neither 3-isopropyl- nor Z-tert-butyl-indole dimerizes. This failure is most probably the result of steric hindrance of approach of the electrophilic reagent to position 2 by the bulky 3-substituent in the unprotonated molecule. On the other hand, models show that approach of a nucleophilic reagent to position 2 of a 3-protonated molecule is quite open, it should, there-... [Pg.307]

These equations show that hydrophobic and steric (van der Waals) interactions are of prime importance in the inclusion processes of cyclodextrin-alcohol systems. The coefficient of Es was positive in sign for an a-cyclodextrin system and negative for a P-cyclodextrin system. These clear-cut differences in sign reflect the fact that a bulky alcohol is subject to van der Waals repulsion by the a-cyclodextrin cavity and to van der Waals attraction by the p-cyclodextrin cavity. [Pg.71]

Alkylation reactions are subject to the same constraints that affect all Sn2 reactions (Section 11.3). Thus, the leaving group X in the alkylating agent R—X can be chloride, bromide, iodide, or tosylate. The alkyl group R should be primary or methyl, and preferably should be allylic or benzylic. Secondary halides react poorly, and tertiary halides don t react at all because a competing E2 elimination of HX occurs instead. Vinylic and aryl halides are also unreactive because backside approach is sterically prevented. [Pg.855]

Steric factors also play an important role in determining the regiochemistry of the dihydroxylation, and the modeling studies appear to show that the C3-C4 double bond is more hindered than the C5-C6 double bond, although this is often a rather subjective... [Pg.696]

Dimerization, however, is subject to steric restraint and is inhibited by substituents at the 2-, 4- and 7-positions.115 In such cases thermolysis of the l//-azepine leads to aromatization to the corresponding N-arylearbamate. [Pg.186]

With the radical 29, even though loss of an equatorial hydrogen should be sterically less hindered and is favored thermodynamically (by relief of 1,3 interactions of the axial methyl), there is an 8-fold preference for loss of the axial hydrogen (at 100 ( i. The selectivity observed in the disproportionation of this and other substituted cyclohexyl radicals led Beckwith18 to propose that disproportionation is subject to stereoelectronic control which results in preferential breaking of the C-H bond which has best overlap with the orbital bearing the unpaired spin. [Pg.39]

The ionization of alkyl (E)-arylazo ethers is subject to general acid catalysis when the reaction is carried out in the presence of carboxylic acid buffers (see Scheme 6-3), and the ionization is also subject to steric acceleration in the presence of bulky substituents ortho to the azo ether group (Broxton and Stray, 1980 Broxton and McLeish, 1983 a, and earlier work of Broxton s group). [Pg.210]

The approach taken above estimates the effect of the metal by simply considering its electrostatic effect (subjected, of course, to the correct steric constraint as dictated by the metal van der Waals parameters). To examine the validity of this approach for other systems let s consider the reaction of the enzyme carbonic anhydrase, whose active site is shown in Fig. 8.6. The reaction of this enzyme involves the hydration of C02, which can be described as (Ref. 5)... [Pg.197]

Since steric effects can change catalysis (e.g., the above mentione trypsin case), one may still argue that such effects do influence the correl tion between structure and function. However, this case is not so relevant t structure-function correlation since the steric effects establish new structui and the activity associated with this structure is the main subject of ot... [Pg.210]

Schemes are available, however, that start from the free carboxylic acid, plus an activator . Dicyclohexylcarbodiimide, DCC, has been extensively employed as a promoter in esterification reactions, and in protein chemistry for peptide bond formation [187]. Although the reagent is toxic, and a stoichiometric concentration or more is necessary, this procedure is very useful, especially when a new derivative is targeted. The reaction usually proceeds at room temperature, is not subject to steric hindrance, and the conditions are mild, so that several types of functional groups can be employed, including acid-sensitive unsaturated acyl groups. In combination with 4-pyrrolidinonepyridine, this reagent has been employed for the preparation of long-chain fatty esters of cellulose from carboxylic acids, as depicted in Fig. 5 [166,185,188] ... Schemes are available, however, that start from the free carboxylic acid, plus an activator . Dicyclohexylcarbodiimide, DCC, has been extensively employed as a promoter in esterification reactions, and in protein chemistry for peptide bond formation [187]. Although the reagent is toxic, and a stoichiometric concentration or more is necessary, this procedure is very useful, especially when a new derivative is targeted. The reaction usually proceeds at room temperature, is not subject to steric hindrance, and the conditions are mild, so that several types of functional groups can be employed, including acid-sensitive unsaturated acyl groups. In combination with 4-pyrrolidinonepyridine, this reagent has been employed for the preparation of long-chain fatty esters of cellulose from carboxylic acids, as depicted in Fig. 5 [166,185,188] ...
The steric environment of the atoms in the vicinity of the reaction centre will change in the course of a chemical reaction, and consequently the potential energy due to non-bonded interactions will in general also change and contribute to the free energy of activation. The effect is mainly on the vibrational energy levels, and since they are usually widely spaced, the contribution is to the enthalpy rather than the entropy. When low vibrational frequencies or internal rotations are involved, however, effects on entropy might of course also be expected. In any case, the rather universal non-bonded effects will affect the rates of essentially all chemical reactions, and not only the rates of reactions that are subject to obvious steric effects in the classical sense. [Pg.2]

There is strong evidence that DNA adduction by these bulky reactive metabolites of PAHs is far from random, and that there are certain hot spots that are preferentially attacked. Differential steric hindrance and the differential operation of DNA repair mechanisms ensure that particular sites on DNA are subject to stable adduct formation (Purchase 1994). DNA repair mechanisms clearly remove many PAH/ guanine adducts very quickly, but studies with P postlabeling have shown that certain adducts can be very persistent—certainly over many weeks. Evidence for this has been produced in studies on fish and Xenopus (an amphibian Reichert et al. 1991 Waters et al. 1994). [Pg.188]


See other pages where Subject steric is mentioned: [Pg.189]    [Pg.50]    [Pg.287]    [Pg.40]    [Pg.573]    [Pg.276]    [Pg.80]    [Pg.25]    [Pg.26]    [Pg.21]    [Pg.304]    [Pg.117]    [Pg.294]    [Pg.272]    [Pg.274]    [Pg.314]    [Pg.320]    [Pg.502]    [Pg.78]    [Pg.17]    [Pg.16]    [Pg.810]    [Pg.181]    [Pg.183]    [Pg.204]    [Pg.123]    [Pg.106]   
See also in sourсe #XX -- [ Pg.159 , Pg.160 , Pg.209 ]




SEARCH



Steric effects Subject

Subject steric course

Subject steric hindrance

Subject sterically hindered

© 2024 chempedia.info