Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject recovery

In addition to ARSAC approval, the protocol must also be approved by ethics committees in the normal manner for studies in man. The study should be conducted in between four and eight consenting subjects, in facilities where any spills of radiolabelled materials can be contained and monitored. Normally, subjects will be required to provide blood samples and to collect all excreta for a period determined by the known or estimated half-lives of the parent compound and metabolite. With cooperative subjects, recoveries of radioactivity should be close to 100%. Samples will be assayed for radioactivity and by cold chromatographic methods, and every attempt should be made to identify major metabolites... [Pg.191]

This approach is circular and only works well in cases where liquid credit default markets already exist for an issuer. This is not always the case and was definitely not the case when default swaps were first introduced. Nonetheless, it still requires a highly subjective recovery value assumption. [Pg.701]

Most recovery boilers use 63,5 mm OD carbon steel tubes in the generating bank. With a few exceptions these tubes are swaged at the ends to 50,8 mm. When the 63,5 mm raw tube is manufactured it is subject to a lot of specifications i.e. ASME. There are no specifications for the swaged end of the tube. This is unfortunate as the swaged part of the tube is subjected to further mechanical deformation dtuing the rolling procedure and is located in a wastage zone of tire recovery boiler. [Pg.1034]

With a prescriptive approach to quality assessment, duplicate samples, blanks, standards, and spike recoveries are measured following a specific protocol. The result for each analysis is then compared with a single predetermined limit. If this limit is exceeded, an appropriate corrective action is taken. Prescriptive approaches to quality assurance are common for programs and laboratories subject to federal regulation. For example, the Food and Drug Administration (FDA) specifies quality assurance practices that must be followed by laboratories analyzing products regulated by the FDA. [Pg.712]

The component C in the separated extract from the stage contact shown in Eigure 1 may be separated from the solvent B by distillation (qv), evaporation (qv), or other means, allowing solvent B to be reused for further extraction. Alternatively, the extract can be subjected to back-extraction (stripping) with solvent A under different conditions, eg, a different temperature again, the stripped solvent B can be reused for further extraction. Solvent recovery (qv) is an important factor in the economics of industrial extraction processes. [Pg.60]

Guar gum [9000-30-0] derived from the seed of a legume (11,16), is used as a flocculant in the filtration of mineral pulps leached with acid or cyanide for the recovery of uranium and gold (16). It is also used as a retention aid, usually in a chemically modified form (14,17). Starch and guar gum are subject to biological degradation in solution, so they are usually sold as dry powders that are dissolved immediately before use. Starch requires heating in most cases to be fully dissolved. [Pg.32]

Uranium is converted by CIF, BiF, and BrP to UF. The recovery of uranium from irradiated fuels has been the subject of numerous and extensive investigations sponsored by atomic energy agencies in a number of countries (55—63). The fluorides of the nuclear fission products are nonvolatile hence the volatile UF can be removed by distiUation (see Nuclearreactors Uraniumand uranium compounds). [Pg.185]

After recovery of L-lysine, the residual dl-(49) is epimerized to a mixture of the DL and meso isomers, and the latter is subjected to the same decarboxylation step. This reaction is a part of a microbial process in which glucose is fermented by a lysine auxotroph of E. coli to meso- which accumulates in the medium. Meso-(49) is quantitatively decarboxylated to L-lysine by cell suspensions oi erobacteraerogenes (93). However, L-lysine and some... [Pg.313]

The effect of temperature, pressure, and oil composition on oil recovery efficiency have all been the subjects of intensive study (241). Surfactant propagation is a critical factor in determining the EOR process economics (242). Surfactant retention owing to partitioning into residual cmde oil can be significant compared to adsorption and reduce surfactant propagation rate appreciably (243). [Pg.194]

Precipitator dust often contains concentrated amounts of minor ore components that make it attractive. The potassium, phosphate, and 2inc content have resulted in its use in ferti1i2er, and the sdver and gallium content have been the subject of some recovery efforts (see Recycling). [Pg.353]

The cmde phthaUc anhydride is subjected to a thermal pretreatment or heat soak at atmospheric pressure to complete dehydration of traces of phthahc acid and to convert color bodies to higher boiling compounds that can be removed by distillation. The addition of chemicals during the heat soak promotes condensation reactions and shortens the time required for them. Use of potassium hydroxide and sodium nitrate, carbonate, bicarbonate, sulfate, or borate has been patented (30). Purification is by continuous vacuum distillation, as shown by two columns in Figure 1. The most troublesome impurity is phthahde (l(3)-isobenzofuranone), which is stmcturaHy similar to phthahc anhydride. Reactor and recovery conditions must be carefully chosen to minimize phthahde contamination (31). Phthahde [87-41-2] is also reduced by adding potassium hydroxide during the heat soak (30). [Pg.484]

The H2S sulfanes are the subject of several reviews (129,133). Except for hydrogen sulfide these have no practical utiUty. Sodium tetrasulfide [12034-39-8] is available commercially as a 40 wt % aqueous solution and is used to dehair hides in taimeries, as an ore flotation agent, in the preparation of sulfur dyes (qv), and for metal sulfide finishes (see Leather Mineral recovery and processing). [Pg.137]

Finishing of Wool. Wool (qv) competes for markets where warmth, wrinkle recovery, and abiUty to set in creases are important. Wool problems relate to shrinkage, particularly to its tendency to felt. This is caused by scaly stmcture, which tends toward fiber entanglement when wet and subjected to mechanical action. In order to compensate for this tendency, wool needs to be set and also made shrinkproof if it is to be laundered. [Pg.449]

AATCC Test Method no. 66 describes measurement of recovery angle after placing a crease in a specimen. The specimen is creased by subjecting is to a prescribed load for a length of time. The recovery angle is then measured after a controlled recovery period. Recovery angles of greater than 120° are... [Pg.462]

Ground turbine fuels are not subject to the constraints of an aircraft operating at reduced pressures of altitude. The temperature of fuel in ground tanks varies over a limited range, eg, 10—30°C, and the vapor pressure is defined by a safety-handling factor such as flash point temperature. Volatile fuels such as naphtha (No. 0-GT) are normally stored in a ground tank equipped with a vapor recovery system to minimise losses and meet local air quaUty codes on hydrocarbons. [Pg.415]

Benzene is a natural component of petroleum, but the amount of benzene present ia most cmde oils is small, often less than 1.0% by weight (34). Therefore the recovery of benzene from cmde oil is uneconomical and was not attempted on a commercial scale until 1941. To add further compHcations, benzene cannot be separated from cmde oil by simple distillation because of azeotrope formation with various other hydrocarbons. Recovery is more economical if the petroleum fraction is subjected to a thermal or catalytic process that iacreases the concentration of benzene. [Pg.40]

Product Recovery. The aHyl chloride product is recovered through the use of several fractional distillation steps. Typically, the reactor effluent is cooled and conducted into an initial fractionator to separate the HCl and propylene from the chloropropenes, dichloropropanes, dichloropropenes, and heavier compounds. The unconverted propylene is recycled after removal of HCl, which can be accompHshed by adsorption in water or fractional distillation (33,37,38) depending on its intended use. The crude aHyl chloride mixture from the initial fractionator is then subjected to a lights and heavies distillation the lighter (than aHyl chloride) compounds such as 2-chloropropene, 1-chloropropene, and 2-chloropropane being the overhead product of the first column. AHyl chloride is then separated in the second purification column as an overhead product. Product purities can exceed 99.0% and commercial-grade aHyl chloride is typicaHy sold in the United States in purities about 99.5%. [Pg.34]

The introduction of surfactant products into the environment, after use by consumers or as part of waste disposed during manufacture, is regulated by the Clean Water Act, the Clean Air Act, and the Resource Conservation and Recovery Act. In this respect, surfactants are subject to the same regulations as chemicals in general. There are, however, two areas of specific relevance to surfactants and detergent products, ie, biodegradabiUty and eutrophication. [Pg.540]

Book-Bas s Depreciation. The book-basis depreciation is arbitrarily determined by management on a year-to-year basis, subject to acceptable accounting practice. This is not an out-of-pocket expense. It is simply a charge for the recovery of capital ia earnings calculations and is available as capital for reinvestment or distribution. Some consistent treatment for recovery of capital must be assumed ia profitabiUty analysis. [Pg.447]


See other pages where Subject recovery is mentioned: [Pg.1018]    [Pg.238]    [Pg.465]    [Pg.1018]    [Pg.238]    [Pg.465]    [Pg.69]    [Pg.271]    [Pg.488]    [Pg.36]    [Pg.428]    [Pg.542]    [Pg.405]    [Pg.510]    [Pg.279]    [Pg.248]    [Pg.304]    [Pg.268]    [Pg.423]    [Pg.466]    [Pg.296]    [Pg.308]    [Pg.335]    [Pg.357]    [Pg.460]    [Pg.463]    [Pg.244]    [Pg.341]    [Pg.47]    [Pg.156]    [Pg.30]    [Pg.292]    [Pg.30]    [Pg.230]    [Pg.231]   


SEARCH



Monomer recovery Subject

Recovery rate Subject

Subject monitor recovery

© 2024 chempedia.info