Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

302 Subject Purification

The chief uses of chromatographic adsorption include (i) resolution of mixtures into their components (Li) purification of substances (including technical products from their contaminants) (iii) determination of the homogeneity of chemical substances (iv) comparison of substances suspected of being identical (v) concentration of materials from dilute solutions (e.g., from a natural source) (vi) quantita tive separation of one or more constituents from a complex mixture and (vii) identi-1 ig- II, 16, 3. gcajjQij and control of technical products. For further details, the student is referred to specialised works on the subject. ... [Pg.158]

Independent Assays for Provings Virus Removal. Retrovimses and vimses can also be present in culture fluids of mammalian cell lines (15,24). Certainly the absence of vims can be difficult to prove. Model vimses, eg, NIH Rausher leukemia vims and NZB Xenotropic vims, were spiked into fluids being purified, and their removal subsequently vaUdated when subjected to the same purification sequence as used for the product. [Pg.45]

Fine chemicals are produced by a wide spectmm of manufacturers, largely because the distinction between different kinds of chemicals is not sharp. There are specialty producers of fine chemicals. Many companies that manufacture dmgs also manufacture the chemical substances that are used in preparing the dosage forms. A number of companies manufacture dmg chemicals and food chemicals. Some fine chemicals are made by manufacturers of heavy chemicals, and either may be simply a segment of their regular production, or some of that production which has been subjected to additional purification steps. Many fine chemicals are imported into the United States from countries such as Japan, Germany, and the Netherlands. [Pg.444]

Two main operational variables that differentiate the flotation of finely dispersed coUoids and precipitates in water treatment from the flotation of minerals is the need for quiescent pulp conditions (low turbulence) and the need for very fine bubble sizes in the former. This is accompHshed by the use of electroflotation and dissolved air flotation instead of mechanically generated bubbles which is common in mineral flotation practice. Electroflotation is a technique where fine gas bubbles (hydrogen and oxygen) are generated in the pulp by the appHcation of electricity to electrodes. These very fine bubbles are more suited to the flotation of very fine particles encountered in water treatment. Its industrial usage is not widespread. Dissolved air flotation is similar to vacuum flotation. Air-saturated slurries are subjected to vacuum for the generation of bubbles. The process finds limited appHcation in water treatment and in paper pulp effluent purification. The need to mn it batchwise renders it less versatile. [Pg.52]

There has been an increasing interest in utilising off-gas technology to produce ammonia. A number of ammonia plants have been built that use methanol plant purge gas, which consists typically of 80% hydrogen. A 1250 t/d methanol plant can supply a sufficient amount of purge gas to produce 544 t/d of ammonia. The purge gas is first subjected to a number of purification steps prior to the ammonia synthesis. [Pg.422]

Most aroma chemicals are relatively high boiling (80—160°C at 0.4 kPa = 3 mm Hg) Hquids and therefore are subject to purification by vacuum distillation. Because small amounts of decomposition may lead to unacceptable odor contamination, thermal stabiUty of products and by-products is an issue. Important advances have been made in distillation techniques and equipment to allow routine production of 5000 kg or larger batches of various products. In order to make optimal use of equipment and to standardize conditions for distillations and reactions, computer control has been instituted. This is particulady well suited to the multipurpose batch operations encountered in most aroma chemical plants. In some instances, on-line analytical capabihty is being developed to work in conjunction with computer controls. [Pg.85]

The cmde phthaUc anhydride is subjected to a thermal pretreatment or heat soak at atmospheric pressure to complete dehydration of traces of phthahc acid and to convert color bodies to higher boiling compounds that can be removed by distillation. The addition of chemicals during the heat soak promotes condensation reactions and shortens the time required for them. Use of potassium hydroxide and sodium nitrate, carbonate, bicarbonate, sulfate, or borate has been patented (30). Purification is by continuous vacuum distillation, as shown by two columns in Figure 1. The most troublesome impurity is phthahde (l(3)-isobenzofuranone), which is stmcturaHy similar to phthahc anhydride. Reactor and recovery conditions must be carefully chosen to minimize phthahde contamination (31). Phthahde [87-41-2] is also reduced by adding potassium hydroxide during the heat soak (30). [Pg.484]

Product Recovery. The aHyl chloride product is recovered through the use of several fractional distillation steps. Typically, the reactor effluent is cooled and conducted into an initial fractionator to separate the HCl and propylene from the chloropropenes, dichloropropanes, dichloropropenes, and heavier compounds. The unconverted propylene is recycled after removal of HCl, which can be accompHshed by adsorption in water or fractional distillation (33,37,38) depending on its intended use. The crude aHyl chloride mixture from the initial fractionator is then subjected to a lights and heavies distillation the lighter (than aHyl chloride) compounds such as 2-chloropropene, 1-chloropropene, and 2-chloropropane being the overhead product of the first column. AHyl chloride is then separated in the second purification column as an overhead product. Product purities can exceed 99.0% and commercial-grade aHyl chloride is typicaHy sold in the United States in purities about 99.5%. [Pg.34]

Purification. The objective of crystallization also can be purification of a chemical species. For example, L-isoleucine (an essential amino acid) is separated by crystallization from a fermentation broth that has been filtered and subjected to ion exchange. The recovered crystals contain impurities deleterious to use of the product, and these crystals are, therefore, redissolved and recrystalHzed to enhance purity. [Pg.338]

The gases from the reactor are then cooled and subjected to a caustic wash to remove unreacted hydrogen chloride. This is then followed by a methanol wash to remove water introduced during the caustic wash. A final purification to remove aldehydes and ethylidene dichloride, formed during side reactions, is then carried out by low-temperature fractionation. The resulting pure vinyl chloride is then stored under nitrogen in a stainless steel tank. [Pg.314]

When we refer to water purification, it makes little sense to discuss the subject without first identifying the contaminants that we wish to remove from water. Also, the source of the water is of importance. Our discussion at this point focuses on drinking water. Groundwater sources are of a particular concern, because there are many communities throughout the U.S. that rely on this form. The following are some of the major contaminants that are of concern in water purification applications, as applied to drinking water sources, derived from groundwater. [Pg.4]

C. Isolation and purification of XK-62-2 100 g of the white powder obtained in the above step B are placed to form a thin, uniform layer on the upper part of a 5 cm0X 150 cm column packed with about 3 kg of silica gel advancely suspended in a solvent of chloroform, isopropanol and 17% aqueous ammonia (2 1 1 by volume). Thereafter, elution is carried out with the same solvent at a flow rate of about 250 ml/hour. The eluate is separated in 100 ml portions. The active fraction is subjected to paper chromatography to examine the components eluted. XK-62-2 is eluted in fraction Nos. 53-75 and gentamicin Cja is eluted in fraction Nos. 85-120. The fraction Nos. 53-75 are combined and concentrated under reduced pressure to sufficiently remove the solvent. The concentrate Is then dissolved in a small amount of water. After freeze-drying the solution, about 38 g of a purified preparate of XK-62-2 (free base) is obtained. The preparate has an activity of 950 units/mg. Likewise, fraction Nos. 85-120 are combined and concentrated under reduced pressure to sufficiently remove the solvent. The concentrate is then dissolved in a small amount of water. After freeze-drying the solution, about 50 g of a purified preparate of gentamicin Cja (free base) is obtained. [Pg.1024]

The residual oil is subjected to distillation under reduced pressure, the fraction boiling in the range of 185°Cto 198°C/4 mm Hg being collected. Purification of the fraction by redistillation under reduced pressure gives 22.5 parts by weight of N-(2-piperidinoethyl)-N-(2-pyridyl-methylj-aniline which boils at 195°C to 196°C/4 mm Hg. Yield 76.3%. [Pg.1231]

The final two stages are very straightforward. Oxidative scission of the C3-C5 double bond in 6 with ozone provides triketone 5 which, without purification, is subjected to a base-induced intramolecular aldol/dehydration reaction. The crystalline product obtained from this two-step sequence (45 % overall yield) was actually an 85 15 mixture of ( )-progesterone and a diastereomeric substance, epimeric at C-17. Two recrystallizations afforded racemic progesterone [( )-(1)] in diastereomerically pure form. [Pg.92]

Any impurities present in the solvents may aifect the cut-ofT value, and it is therefore essential to employ materials of the highest purity. Most major suppliers of laboratory chemicals offer products which have been specially purified and carefully tested to ensure that they are of the requisite standard for use in spectrophotometric determinations. Such chemicals are usually identified by a special name as for example the Spectrosol , materials supplied by BDH Ltd. In many cases, however, it suffices to subject the purest material available to spectrophotometric examination, and if there is no appreciable absorption over the spectral range required for the proposed determination, the solvent may be used otherwise careful purification will be needed.18... [Pg.675]

In a chemical production process at least one of the unit operations (the chemical reactor) is the place in which chemical conversion takes place. However, the chemical upstream reactor is proceeded by a series of unit operations in which the new materials are downstream prepared (the upstream operations). After conversion has taken place, the products are operations subjected to a further series of unit operations (the downstream operations). These downstream operations include product recovery and purification steps. A typical example of a production process is illustrated in Figure 1.1. [Pg.4]

Purification of photoprotein. The dialyzed photoprotein solution was centrifuged to remove precipitates, and then subjected to fractional precipitation by ammonium sulfate, taking a fraction precipitated between 30% and 50% saturation. The protein precipitate was dissolved in 50 ml of 10 mM sodium phosphate, pH 6.0, containing 0.1 mM oxine ( pH 6.0 buffer ), dialyzed against the same buffer, and the dialyzed solution was adsorbed on a column of DEAE-cellulose (2.5 x 13 cm) prepared with the pH 6.0 buffer. The elution was done by a stepwise increase of NaCl concentration. The photoprotein was eluted at 0.2-0.25 M NaCl and a cloudy substance (cofactor 1) was eluted at about 0.5 M NaCl. The photoprotein fraction was further purified on a column of Sephadex G-200 or Ultrogel AcA 34 (1.6 x 80 cm) using the pH 6.0 buffer that contained 0.5 M NaCl. [Pg.219]

Kaufmann, M., Unstable proteins how to subject them to chromatographic separations for purification procedures. J. Chromatogr. B 699, 347 (1997). [Pg.415]

The subject of the separation and purification of metals with the aid of chitosan has been reviewed by Inoue (1998) who collected data relevant to chitosans modified with chelating functional groups as well [111]. [Pg.162]


See other pages where 302 Subject Purification is mentioned: [Pg.1028]    [Pg.43]    [Pg.57]    [Pg.562]    [Pg.246]    [Pg.298]    [Pg.496]    [Pg.156]    [Pg.378]    [Pg.2057]    [Pg.2063]    [Pg.14]    [Pg.23]    [Pg.500]    [Pg.503]    [Pg.503]    [Pg.451]    [Pg.238]    [Pg.3]    [Pg.62]    [Pg.446]    [Pg.644]    [Pg.644]    [Pg.338]    [Pg.212]    [Pg.1090]    [Pg.94]    [Pg.224]    [Pg.129]    [Pg.624]    [Pg.392]    [Pg.25]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Purification problem Subject

© 2024 chempedia.info