Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode Subject

In recent years, advances in experimental capabilities have fueled a great deal of activity in the study of the electrified solid-liquid interface. This has been the subject of a recent workshop and review article [145] discussing structural characterization, interfacial dynamics and electrode materials. The field of surface chemistry has also received significant attention due to many surface-sensitive means to interrogate the molecular processes occurring at the electrode surface. Reviews by Hubbard [146, 147] and others [148] detail the progress. In this and the following section, we present only a brief summary of selected aspects of this field. [Pg.202]

The treatment may be made more detailed by supposing that the rate-determining step is actually from species O in the OHP (at potential relative to the solution) to species R similarly located. The effect is to make fi dependent on the value of 2 and hence on any changes in the electrical double layer. This type of analysis has permitted some detailed interpretations to be made of kinetic schemes for electrode reactions and also connects that subject to the general one of this chapter. [Pg.214]

Electron tunnelling tlirough monolayers of long-chain carboxylic acids is one aspect of interest since it was assumed tliat such films could be used as gate electrodes in field-effect transistors or even in devices depending on electron tunnelling [24, 26, 35, 36, 37 and 38]- It was found, however, tliat tlie whole subject depends critically on... [Pg.2614]

Thus if a mixture containing alanine aspartic acid and lysine is subjected to electrophoresis m a buffer that matches the isoelectric point of alanine (pH 6 0) aspartic acid (pi = 2 8) migrates toward the positive electrode alanine remains at the origin and lysine (pi =9 7) migrates toward the negative elec trode (Figure 27 3b)... [Pg.1120]

The potential of the indicator electrode in a potentiometric electrochemical cell is proportional to the concentration of analyte. Two classes of indicator electrodes are used in potentiometry metallic electrodes, which are the subject of this section, and ion-selective electrodes, which are covered in the next section. [Pg.473]

Unlike ion-selective electrodes using glass membranes, crystalline solid-state ion-selective electrodes do not need to be conditioned before use and may be stored dry. The surface of the electrode is subject to poisoning, as described earlier for a Ck ISE in contact with an excessive concentration of Br. When this happens, the electrode can be returned to its original condition by sanding and polishing the crystalline membrane. [Pg.482]

Studies aimed at characterizing the mechanisms of electrode reactions often make use of coulometry for determining the number of electrons involved in the reaction. To make such measurements a known amount of a pure compound is subject to a controlled-potential electrolysis. The coulombs of charge needed to complete the electrolysis are used to determine the value of n using Faraday s law (equation 11.23). [Pg.506]

Two main operational variables that differentiate the flotation of finely dispersed coUoids and precipitates in water treatment from the flotation of minerals is the need for quiescent pulp conditions (low turbulence) and the need for very fine bubble sizes in the former. This is accompHshed by the use of electroflotation and dissolved air flotation instead of mechanically generated bubbles which is common in mineral flotation practice. Electroflotation is a technique where fine gas bubbles (hydrogen and oxygen) are generated in the pulp by the appHcation of electricity to electrodes. These very fine bubbles are more suited to the flotation of very fine particles encountered in water treatment. Its industrial usage is not widespread. Dissolved air flotation is similar to vacuum flotation. Air-saturated slurries are subjected to vacuum for the generation of bubbles. The process finds limited appHcation in water treatment and in paper pulp effluent purification. The need to mn it batchwise renders it less versatile. [Pg.52]

Sources of Error. pH electrodes are subject to fewer iaterfereaces and other types of error than most potentiometric ionic-activity sensors, ie, ion-selective electrodes (see Electro analytical techniques). However, pH electrodes must be used with an awareness of their particular response characteristics, as weU as the potential sources of error that may affect other components of the measurement system, especially the reference electrode. Several common causes of measurement problems are electrode iaterferences and/or fouling of the pH sensor, sample matrix effects, reference electrode iastabiHty, and improper caHbration of the measurement system (12). [Pg.465]

Silver electrodes prepared by any of the three methods are almost always subjected to a sintering operation prior to cell or battery assembly. [Pg.554]

The sohd line in Figure 3 represents the potential vs the measured (or the appHed) current density. Measured or appHed current is the current actually measured in an external circuit ie, the amount of external current that must be appHed to the electrode in order to move the potential to each desired point. The corrosion potential and corrosion current density can also be deterrnined from the potential vs measured current behavior, which is referred to as polarization curve rather than an Evans diagram, by extrapolation of either or both the anodic or cathodic portion of the curve. This latter procedure does not require specific knowledge of the equiHbrium potentials, exchange current densities, and Tafel slope values of the specific reactions involved. Thus Evans diagrams, constmcted from information contained in the Hterature, and polarization curves, generated by experimentation, can be used to predict and analyze uniform and other forms of corrosion. Further treatment of these subjects can be found elsewhere (1—3,6,18). [Pg.277]

Perhaps the most precise, reHable, accurate, convenient, selective, inexpensive, and commercially successful electroanalytical techniques are the passive techniques, which include only potentiometry and use of ion-selective electrodes, either direcdy or in potentiometric titrations. Whereas these techniques receive only cursory or no treatment in electrochemistry textbooks, the subject is regularly reviewed and treated (19—22). Reference 22 is especially recommended for novices in the field. Additionally, there is a journal, Ion-Selective Electrode Reviews, devoted solely to the use of ion-selective electrodes. [Pg.55]

The distribution of current (local rate of reaction) on an electrode surface is important in many appHcations. When surface overpotentials can also be neglected, the resulting current distribution is called primary. Primary current distributions depend on geometry only and are often highly nonuniform. If electrode kinetics is also considered, Laplace s equation stiU appHes but is subject to different boundary conditions. The resulting current distribution is called a secondary current distribution. Here, for linear kinetics the current distribution is characterized by the Wagner number, Wa, a dimensionless ratio of kinetic to ohmic resistance. [Pg.66]

Specific-Ion Electrodes In addition to the pH glass electrode specific for hydrogen ions, a number of electrodes that are selective for the measurement of other ions have been developed. This selectivity is obtained through the composition of the electrode membrane (glass, polymer, or liquid-liquid) and the composition of the elec trode. Tbese electrodes are subject to interference from other ions, and the response is a function of the total ionic strength of the solution. However, electrodes have been designed to be highly selective for specific ions, and when properly used, these provide valuable process measurements. [Pg.765]

A signihcant problem in tire combination of solid electrolytes with oxide electrodes arises from the difference in thermal expansion coefficients of the materials, leading to rupture of tire electrode/electrolyte interface when the fuel cell is, inevitably, subject to temperature cycles. Insufficient experimental data are available for most of tire elecuolytes and the perovskites as a function of temperature and oxygen partial pressure, which determines the stoichiometty of the perovskites, to make a quantitative assessment at the present time, and mostly decisions must be made from direct experiment. However, Steele (loc. cit.) observes that tire electrode Lao.eSro.rCoo.aFeo.sOs-j functions well in combination widr a ceria-gadolinia electrolyte since botlr have closely similar thermal expansion coefficients. [Pg.247]

Ion-selective electrodes are a relatively cheap approach to analysis of many ions in solution. The emf of the selective electrode is measured relative to a reference electrode. The electrode potential varies with the logarithm of the activity of the ion. The electrodes are calibrated using standards of the ion under investigation. Application is limited to those ions not subject to the same interference as ion chromatography (the preferred technique), e.g. fluoride, hydrogen chloride (see Table 10.3). [Pg.310]

B2CI4 was the first compound in this series to be prepared and is the most studied it is best made by subjecting BCI3 vapour to an electrical discharge between mercury or copper electrodes ... [Pg.200]


See other pages where Electrode Subject is mentioned: [Pg.604]    [Pg.1180]    [Pg.491]    [Pg.380]    [Pg.349]    [Pg.311]    [Pg.74]    [Pg.425]    [Pg.230]    [Pg.536]    [Pg.554]    [Pg.578]    [Pg.518]    [Pg.528]    [Pg.15]    [Pg.210]    [Pg.79]    [Pg.15]    [Pg.341]    [Pg.45]    [Pg.122]    [Pg.486]    [Pg.85]    [Pg.1180]    [Pg.544]    [Pg.21]    [Pg.104]    [Pg.128]    [Pg.655]    [Pg.331]    [Pg.464]    [Pg.1365]    [Pg.98]   
See also in sourсe #XX -- [ Pg.259 , Pg.260 , Pg.261 , Pg.262 , Pg.263 ]




SEARCH



Electrode/solution interface Subject

Membrane electrode assembly Subject

Oxides, electrode/solution interface 424 Subject

Subject modified electrodes

Subject rotating disc electrodes

© 2024 chempedia.info