Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrenic plastics acrylonitrile butadiene styrene

As of 1992, the first specialty platable plastic, acrylonitrile—butadiene—styrene (ABS) terpolymer (see Acrylonitrile polymers, ABS resins), is used ia over 90% of POP appHcatioas. Other platable plastics iaclude poly(pheayleae ether) (see PoLYETPiERs), ayloa (see Polyamides), polysulfoae (see Polymers CONTAINING sulfur), polypropyleae, polycarboaate, pheaoHcs (see Pphenolic resins), polycarboaate—ABS alloys, polyesters (qv), foamed polystyreae (see Styrene plastics), and other foamed plastics (qv). [Pg.109]

The primary use of acrylonitrile is as the raw material for the manufacture of acrylic and modacrylic fibers. Other Major uses include the production of plastics (acrylonitrile-butadiene- styrene (ABS) and styrene-acrylonitrile (SAN), nitrile rubbers, nitrile barrier resins, adiponitrile and acrylamide (EPA 1984). [Pg.80]

Cell Hardware. Cell jars are constructed almost exclusively of injection-molded plastics, which are resistant to the strong alkali electrolyte. The most generally used materials are modified styrenes or copolymers of styrene and acrylonitrile (SAN). Another material that has been found to increase shock resistance of cells is ABS plastic (acrylonitrile—butadiene—styrene). All of these plastics can be injection-molded, are solvent-sealable and, in general, meet operating temperature ranges up to about 70°C. For applications that require greater resistance to temperature, some of the more recent plastics such as polysulfone and poly(phenylene oxide) (PPO) injection-moldable materials able to withstand operating temperatures up to 150°C are used. [Pg.555]

In 1998, polyurethanes (PU) and engineering plastics were shown to make up some 58% of advanced materials used in sporting goods [2], and for the moulded sports products, polypropylene (PP) is used three times more, compared to the next most used plastic, acrylonitrile-butadiene-styrene (ABS) [1]. On the other hand, there are also trials for use of other plastics, even the use of tyre crumb for artificial surfaces, carpet underlays and playgrounds, although the use of the latter is not well developed yet (amounting to some 10% of the tyres crumbed). [Pg.177]

Plastics— Acrylonitrile/Butadiene/Styrene (ABS) Moulding and Extrusion Materials— Part 1 Designation System and Basis for Specifications... [Pg.969]

In the case of poly(vinyl chloride) plastics, the FWA is mixed dry with the PVC powder before processing or dissolved in the plasticising agent (see Vinyl polymers). Polystyrene, acrylonitrile—butadiene—styrene (ABS), and polyolefin granulates are powdered with FWA prior to extmsion (2,78) (see... [Pg.120]

Over 70% of the total volume of thermoplastics is accounted for by the commodity resins polyethylene, polypropylene, polystyrene, and poly(vinyl chloride) (PVC) (1) (see Olefin polymers Styrene plastics Vinyl polymers). They are made in a variety of grades and because of their low cost are the first choice for a variety of appHcations. Next in performance and in cost are acryhcs, ceUulosics, and acrylonitrile—butadiene—styrene (ABS) terpolymers (see... [Pg.135]

Styrene [100-42-5] (phenylethene, viaylben2ene, phenylethylene, styrol, cinnamene), CgH5CH=CH2, is the simplest and by far the most important member of a series of aromatic monomers. Also known commercially as styrene monomer (SM), styrene is produced in large quantities for polymerization. It is a versatile monomer extensively used for the manufacture of plastics, including crystalline polystyrene, mbber-modifted impact polystyrene, expandable polystyrene, acrylonitrile—butadiene—styrene copolymer (ABS), styrene—acrylonitrile resins (SAN), styrene—butadiene latex, styrene—butadiene mbber (qv) (SBR), and unsaturated polyester resins (see Acrylonithile polya rs Styrene plastics). [Pg.476]

Two commercially significant graft copolymers are acrylonitrile—butadiene—styrene (ABS) resins and impact polystyrene (IPS) plastics. Both of these families of materials were once simple mechanical polymer blends, but today such compositions are generally graft copolymers or blends of graft copolymers and homopolymers. [Pg.186]

The development of new polymer alloys has caused a lot of excitement in recent years but in fact the concept has been around for a long time. Indeed one of the major commercial successes of today, ABS, is in fact an alloy of acrylonitrile, butadiene and styrene. The principle of alloying plastics is similar to that of alloying metals - to achieve in one material the advantages possessed by several others. The recent increased interest and activity in the field of polymer alloys has occurred as a result of several new factors. One is the development of more sophisticated techniques for combining plastics which were previously considered to be incompatible. Another is the keen competition for a share of new market areas such as automobile bumpers, body panels etc. These applications call for combinations of properties not previously available in a single plastic and it has been found that it is less expensive to combine existing plastics than to develop a new monomer on which to base the new plastic. [Pg.11]

Acrylonitrile-butadiene-styrene (ABS). ABS materials have superior strength, stiffness and toughness properties to many plastics and so they are often considered in the category of engineering plastics. They compare favourably with nylon and acetal in many applications and are generally less expensive. However, they are susceptible to chemical attack by chlorinated solvents, esters, ketones, acids and alkalis. [Pg.16]

Chemical reduction is used extensively nowadays for the deposition of nickel or copper as the first stage in the electroplating of plastics. The most widely used plastic as a basis for electroplating is acrylonitrile-butadiene-styrene co-polymer (ABS). Immersion of the plastic in a chromic acid-sulphuric acid mixture causes the butadiene particles to be attacked and oxidised, whilst making the material hydrophilic at the same time. The activation process which follows is necessary to enable the subsequent electroless nickel or copper to be deposited, since this will only take place in the presence of certain catalytic metals (especially silver and palladium), which are adsorbed on to the surface of the plastic. The adsorbed metallic film is produced by a prior immersion in a stannous chloride solution, which reduces the palladium or silver ions to the metallic state. The solutions mostly employed are acid palladium chloride or ammoniacal silver nitrate. The etched plastic can also be immersed first in acidified palladium chloride and then in an alkylamine borane, which likewise form metallic palladium catalytic nuclei. Colloidal copper catalysts are of some interest, as they are cheaper and are also claimed to promote better coverage of electroless copper. [Pg.436]

Thorough rinsing between the pretreatment steps is essential to prevent carry-over of solutions. The commonest plastic plated is ABS (acrylonitrile butadiene styrene copolymer) but procedures are also available for polypropylene and other plastics. In some proprietary processes, electroless copper solutions are used to give the initial thin conducting layer. [Pg.536]

This comprehensive article supplies details of a new catalytic process for the degradation of municipal waste plastics in a glass reactor. The degradation of plastics was carried out at atmospheric pressure and 410 degrees C in batch and continuous feed operation. The waste plastics and simulated mixed plastics are composed of polyethylene, polypropylene, polystyrene, polyvinyl chloride, acrylonitrile butadiene styrene, and polyethylene terephthalate. In the study, the degradation rate and yield of fuel oil recovery promoted by the use of silica alumina catalysts are compared with the non-catalytic thermal degradation. 9 refs. lAPAN... [Pg.65]

Acrylic Sheet (e.g. Perspex) Acrylonitrile Butadiene Styrene Resins (1) Nylon 66 Fibre (m) Nylon 66 Plastics (m) PCTFE PTFE (n) PVDF (y) Rigid Unplasticised PVC Plasticised PVC ... [Pg.924]

Most plastics e.g. polyolefins and polystyrenes and their derivatives such as ABS (acrylonitrile-butadiene-styrene) and SAN (styrene-acrylonitrile) are supplied by the manufacturers in ready-to-use form with most of the above-mentioned stabilizers or simply need to be additionally stabilized with other additives, e.g. antistatic agents and HALS stabilizers, as required. On the other hand, in the case of other materials (e.g. PVC) it is the end user who adds the additives, pigments or preparations. This is normally done on fluid or high-speed mixers, although in the past gravity mixers or tumble mixers were also used. The mixture is then homogenized on mixing rolls, kneaders, planetary extruders or twin-screw kneaders and further processed. [Pg.161]

In the cavernous halls of the Shanghai Industrial Exhibition, one can see a cornucopia of consumer goods (clothes of polyester, polyacrylic, and polyvinyl alcohol fiber shoes and sandals of polyvinyl chloride suitcases and television set frames of acrylonitrile-butadiene-styrene plastic toys and containers of polyethylene, and many other plastic products (China produced approximately 800,000 tons of plastics in 1980) of convenience we take for granted in the West) that the Chinese government will try to deliver, in quantity, to its citizens in the years to come. [Pg.333]

Plastics such as polypropylene and acrylonitrile butadiene styrene are used for the construction of pretreatment tanks and pipeworks. [Pg.299]

ISO 580 1990 Injection-moulded unplasticized poly(vinyl chloride) (PVC-U) fittings -Oven test - Test method and basic specifications ISO 727-1 2002 Fittings made from unplasticized poly(vinyl chloride) (PVC-U), chlorinated poly (vinyl chloride) (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Part 1 Metric series ISO 727-2 2002 Fittings made from unplasticized poly(vinyl chloride) (PVC-U), chlorinated poly (vinyl chloride) (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Part 2 Inch-based series ISO 1163-1 1995 Plastics - Unplasticized poly(vinyl chloride) (PVC-U) moulding and extrusion materials - Part 1 Designation system and basis for specifications ISO 1163-2 1995 Plastics - Unplasticized poly(vinyl chloride) (PVC-U) moulding and extrusion materials - Part 2 Preparation of test specimens and determination of properties ISO 1265 1979 Plastics - Polyvinyl chloride resins - Determination of number of impurities and foreign particles... [Pg.322]

ISO 11468 1997 Plastics - Preparation of PVC pastes for test purposes - Dissolver method ISO 12092 2000 Fittings, valves and other piping system components made of unplasticized poly(vinyl chloride) (PVC-U), chlorinated poly(vinyl chloride) (PVC-C), acrylonitrile-butadiene-styrene (ABS) and acrylonitrile-styrene-acrylester (ASA) for pipes underpressure - Resistance to internal pressure - Test method... [Pg.324]

ISO 8283-4 1992 Plastics pipes and fittings - Dimensions of sockets and spigots for discharge systems inside buildings - Part 4 Acrylonitrile/butadiene/styrene (ABS)... [Pg.362]

ISO 10366-1 2002 Plastics - Methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) moulding and extrusion materials - Part 1 Designation system and basis for specifications ISO 10366-2 2003 Plastics - Methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) moulding and extrusion materials - Part 2 Preparation of test specimens and determination of properties... [Pg.363]


See other pages where Styrenic plastics acrylonitrile butadiene styrene is mentioned: [Pg.555]    [Pg.362]    [Pg.642]    [Pg.106]    [Pg.51]    [Pg.447]    [Pg.134]    [Pg.37]    [Pg.421]    [Pg.504]    [Pg.327]    [Pg.177]    [Pg.261]    [Pg.336]    [Pg.515]    [Pg.427]    [Pg.323]    [Pg.196]    [Pg.75]    [Pg.325]    [Pg.216]   
See also in sourсe #XX -- [ Pg.47 ]




SEARCH



Acrylonitril-butadiene-styrene

Acrylonitrile-butadiene-styrene

Acrylonitrile-styrene-butadiene plastics

Butadiene-acrylonitrile

STYRENE-ACRYLONITRILE

Styrene-butadiene

Styrenic plastic

© 2024 chempedia.info