Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene-1,2-diol

Various epoxides and aziridines undergo smooth ring opening with water in presence of bismuth triflate (10 mol%) to provide the corresponding v/c-diols and p-amino alcohols with excellent regioselectivity [35]. Reaction of styrene oxide with water in the presence of Bi(OTf)3 affords styrene 1,2-diols (Fig. 7). Similarly,... [Pg.236]

In some cases, oxidation of double bonds does not stop at the epoxide, but proceeds further to oxidative cleavage of the double bond. It was reported that the reaction of a-methyl styrene with H2O2 in the presence of TS-1 or TS-2 produces a-methyl styrene epoxide (15%), a-methyl styrene diol (10-40%) and acetophenone (40-60%) (Reddy, J. S. et al., 1992). However, results similar to those obtained with titanium silicates were obtained for many other catalysts, such as HZSM-5, H-mordenite, HY, A1203, HGa-silicalite-2, and fumed Si02. These materials have much different properties and differ significantly from titanium silicates thus, the results cast some doubt on the role of the catalyst in this reaction. Furthermore, the oxidation of styrene is reported to proceed with C=C cleavage and formation of benzaldehyde, in contrast to previous reports of the formation of phenylacetaldehyde with 85% selectivity (Neri et al., 1986). [Pg.309]

EP, epoxy allylbenzene or styrene oxide PAD, phenylacetaldehyde BD, benzaldehyde Diols, 3-phenyl-1,2-propanediol or styrene diol, including some high-boiling products HP, H2O2 (45 wt% aqueous) U + HP, urea and H2O2 mixture (1 1 mol ratio) UHP, uiea-H202 adduct. [Pg.104]

A polymeric pinacol,poly[3-methyl-2-(4-vinylphenyl)-2,3-butanediol],has been prepared by radical polymerization of the styrenic diol monomer and shown to be cleanly and quantitatively converted to a non-conjugated ketone in the solid state by reaction with a photochemically-generated acid [151,348, 350]. The rearrangement reaction can be readily monitored by IR spectroscopy as the disappearance of the hydroxyl OH absorption is accompanied by appearance of a new ketone carbonyl absorption (Fig. 116). Since a polar alcohol (isopropanol) dissolves the polar diol polymer in the unexposed regions but cannot dissolve the less polar ketone polymer produced in the exposed regions, the resist functions as a negative system with alcohol as a developer. The diol polymer is stable thermally to 225 °C in the absence of acid. [Pg.149]

Scheme 4.27 Synthesis of (S )-styrene diol catalysed by two enzymes. Scheme 4.27 Synthesis of (S )-styrene diol catalysed by two enzymes.
For the classical form of size exclusion chromatography in organic solvents, packings based on highly cross-linked styrene-divinylbenzene are used. For SEC of polar polymers using polar or aqueous solvents, packings based on a polar methacrylate polymer are used. Diol-derivatized silica is used for the separation of proteins and other polar polymers. The different packings will be discussed in sections dedicated to their different application areas. [Pg.326]

Concerning the reaction of ACPC with diols, the frequent use of poly(ethylene glycol) has to be mentioned [20-24]. Ueda et al. ([22-24]) reacted preformed poly(ethylene glycol) (Mn between 6 x 10 to 2 x 10 ) with ACPC. In this case, unlike the reaction of ACPA with diols vide ante), no additional condensation agent was needed. The ethylene glycol-based thermally labile polymers were used to produce blocks with poly(vinyl chloride) [22], poly(styrene) [23], poly(methyl acrylate), poly(vinyl acetate), and poly(acrylonitrile) [24]. [Pg.738]

Furstoss et al. have reported their studies on the use of an epoxide hydrolase with four styrene oxide derivatives (Figure 5.26) [39]. The (R)-diol (43) was obtained in 91% ee at 100% conversion from racemic (42), demonstrating an enantioconvergent... [Pg.128]

In 2008, Que and coworkers reported an asymmetric version of the dihydroxylation with a new type of ligands bearing bipyrrolidine as the chiral backbone [71]. The corresponding iron(II) complex showed general activity in the dihydroxylation of various olefins using H202- Satisfactory results are obtained with aliphatic as well as with aromatic olefins. For example, dihydroxylation of styrene gave styrene oxide and 1-phenylethane-1,2-diol in <1% and 65% yield, respectively (Scheme 10). [Pg.92]

Heteropoly acids can be synergistically combined with phase-transfer catalysis in the so-called Ishii-Venturello chemistry for oxidation reactions such as oxidation of alcohols, allyl alcohols, alkenes, alkynes, P-unsaturated acids, vic-diols, phenol, and amines with hydrogen peroxide (Mizuno et al., 1994). Recent examples include the epoxidations of alkyl undecylenates (Yadav and Satoskar, 1997) and. styrene (Yadav and Pujari, 2000). [Pg.138]

A dispersant that can be used in drilling fluids, spacer fluids, cement slurries, completion fluids, and mixtures of drilling fluids and cement slurries controls the rheologic properties of and enhances the filtrate control in these fluids. The dispersant consists of polymers derived from monomeric residues, including low-molecular-weight olefins that may be sulfonated or phosphonated, unsaturated dicarboxylic acids, ethylenically unsaturated anhydrides, unsaturated aliphatic monocarboxylic acids, vinyl alcohols and diols, and sulfonated or phosphonated styrene. The sulfonic acid, phosphonic acid, and carboxylic acid groups on the polymers may be present in neutralized form as alkali metal or ammonium salts [192,193]. [Pg.311]

Hofmann degradation of the nonnatural protoberberine 454 afforded the 10-membered ring base 455 (65%) in addition to the styrene-type compound (13%) (Scheme 92). Dihydroxylation of the former with N-bromosuccinimide in the presence of a large excess of hydrochloric acid and subsequent oxidation of the product diol 456 with periodic acid afforded the dialdehyde 457. On irradiation in tert-butyl alcohol 457 provided ( )-cis-alpinigenine (445) along with ( )-alpinigenine (441) as a result of endo and exo intramolecular cycloaddition, respectively, of the intermediate photodienol (221,222). [Pg.213]

ABA triblock copolymers, where A was PBd and B either PS or PMMA were prepared by the combination of ROMP and ATRP techniques [122], The PBd middle blocks were obtained through the ROMP of cyclooctadi-ene in the presence of l,4-chloro-2-butene or cis-2-butene-l,4-diol bis(2-bromo)propionate using a Ru complex as the catalyst. The end allyl chloride or 2-bromopropionyl ester groups were subsequently used for the ATRP of either styrene or MMA using CuX/bpy (X = Cl or Br) as the catalytic system (Scheme 50). Quantitative yields but rather broad molecular weight distributions (Mw/Mn higher than 1.4) were obtained. [Pg.66]

Chiral diphosphites based on (2R,3R)-butane-2,3-diol, (2R,4R)-pentane-2,4-diol, (25, 5S)-hexane-2,5-diol, (lS -diphenylpropane-hS-diol, and tV-benzyltartarimide as chiral bridges have been used in the Rh-catalyzed asymmetric hydroformylation of styrene. Enantioselectivities up to 76%, at 50% conversion, have been obtained with stable hydridorhodium diphosphite catalysts. The solution structures of [RhH(L)(CO)2] complexes have been studied NMR and IR spectroscopic data revealed fluxional behavior. Depending on the structure of the bridge, the diphosphite adopts equatorial-equatorial or equatorial-axial coordination to the rhodium. The structure and the stability of the catalysts play a role in the asymmetric induction.218... [Pg.173]

A chiral diphosphite based on binaphthol, coordinated with rhodium (I) forming a nine-member ed ring, led to an efficient hydroformylation of vinylarenes, although moderate ees were obtained (up to 46%) at mild pressure and temperature reaction conditions.364 Chiral diphosphites and phosphinite-phosphites derived from spiro[4.4]nonane-l,6-diol were synthesized. Using these catalysts in the asymmetric hydroformylation of styrene, high regioselectivity (97%) and... [Pg.173]

Mikami and co-workers16-19 have done extensive work for developing catalysts for the asymmetric carbonyl-ene reaction. Excellent enantioselectivites are accessible with the binol-titanium catalyst 17 (Equation (10)) for the condensation of 2-methyl butadiene (R1 = vinyl) and glyoxalates (binol = l,T-binaphthalene-2,2 -diol).16 The products were further manipulated toward the total synthesis of (i )-(-)-ipsdienol. The oxo-titanium species 18 also provides excellent enantioselectivity in the coupling of a-methyl styrene with methyl glyoxalate.17 Reasonable yields and good enantioselectivites are also obtained when the catalyst 19 is formed in situ from titanium isopropoxide and the binol and biphenol derivatives.18... [Pg.561]


See other pages where Styrene-1,2-diol is mentioned: [Pg.104]    [Pg.41]    [Pg.169]    [Pg.235]    [Pg.166]    [Pg.167]    [Pg.180]    [Pg.412]    [Pg.321]    [Pg.22]    [Pg.326]    [Pg.739]    [Pg.741]    [Pg.748]    [Pg.219]    [Pg.19]    [Pg.59]    [Pg.128]    [Pg.158]    [Pg.159]    [Pg.1051]    [Pg.192]    [Pg.156]    [Pg.103]    [Pg.160]    [Pg.417]    [Pg.143]    [Pg.199]    [Pg.116]    [Pg.117]    [Pg.21]    [Pg.162]    [Pg.283]    [Pg.499]    [Pg.59]    [Pg.221]   
See also in sourсe #XX -- [ Pg.172 ]




SEARCH



© 2024 chempedia.info