Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene-butadiene rubber processability

Polymer Areas Viscosity suppressant for cold styrene-butadiene rubber processes. Useful in elimination of precoagulated polymers. [Pg.89]

Other polymers used in the PSA industry include synthetic polyisoprenes and polybutadienes, styrene-butadiene rubbers, butadiene-acrylonitrile rubbers, polychloroprenes, and some polyisobutylenes. With the exception of pure polyisobutylenes, these polymer backbones retain some unsaturation, which makes them susceptible to oxidation and UV degradation. The rubbers require compounding with tackifiers and, if desired, plasticizers or oils to make them tacky. To improve performance and to make them more processible, diene-based polymers are typically compounded with additional stabilizers, chemical crosslinkers, and solvents for coating. Emulsion polymerized styrene butadiene rubbers (SBRs) are a common basis for PSA formulation [121]. The tackified SBR PSAs show improved cohesive strength as the Mooney viscosity and percent bound styrene in the rubber increases. The peel performance typically is best with 24—40% bound styrene in the rubber. To increase adhesion to polar surfaces, carboxylated SBRs have been used for PSA formulation. Blends of SBR and natural rubber are commonly used to improve long-term stability of the adhesives. [Pg.510]

Polymers can be modified by the introduction of ionic groups [I]. The ionic polymers, also called ionomers, offer great potential in a variety of applications. Ionic rubbers are mostly prepared by metal ion neutralization of acid functionalized rubbers, such as carboxylated styrene-butadiene rubber, carboxylated polybutadiene rubber, and carboxylated nitrile rubber 12-5]. Ionic rubbers under ambient conditions show moderate to high tensile and tear strength and high elongation. The ionic crosslinks are thermolabile and, thus, the materials can be processed just as thermoplastics are processed [6]. [Pg.441]

FIGURE 35.11 Typical energy balance of one batch-mixing process on a GK320E mixer (styrene-butadiene rubber/carbon black [SBR/CB] compound). [Pg.984]

FIGURE 35.13 Typical fingerprint of a masterbatch mixing process of a solution-based styrene-butadiene rubber (S-SBR)/Silica/TESPT tread compound on a GK 320E (Harburg Freudenberger) with PES5 rotors. [Pg.986]

Results of a Fingerprint Analysis of a Masterbatch and Remill Mixing Process of a Styrene-Butadiene Rubber-Carbon Black (SBR-CB) Compound on a CK320E Intermeshing Mixer with PES3 Rotors (Harburg Freudenberger)... [Pg.989]

In 1994, the worldwide consumption of rubber was approximately 14.5 million tons a year, of which about 40% consisted of natural rubber. Natural rubber is produced as latex by tropical rubber trees (Hevea brasiliensis). It is processed locally and therefore the quality of natural rubber fluctuates remarkably [ 140]. Due to increasing demand for rubbers, combined with a decreasing production capacity in Asia and a vast increase in labor costs, the price of natural rubber is still rising sharply. In 1990-1994, the average price of natural rubber was about 0.38 /lb, while in 1996 it was already over 0.80 /lb. The remaining 60% of the articles were manufactured from synthetic petroleum-based rubbers such as isoprene rubber, styrene-butadiene rubber, chloroprene rubber and polyurethanes. The quality of synthetic rubbers is constant, and their price varies between 2 and 5 US per kilogram [137-140]. [Pg.281]

This is styrene-butadiene rubber polymerised at a temperature of 5 °C (41 °F) in contrast to the original polymerisation temperature of 50 °C (122 °F). It is also known as Low Temperature Polymer (LTP). Nitrile rubber can also be made by a low temperature process. Such polymers are characterised by improved processibility. [Pg.18]

Processing aid-80, a masterbatch in the form of pressed crumb consisting of an 80 20 blend of crosslinked to ordinary natural rubber. The correct proportions of vulcanised latex and field latex are blended, coagulated and the resulting crumb pressed into 100 lb bales. The use of PA 80 confers Superior Processing properties on any natural or styrene-butadiene rubber with which it may be mixed. See Superior Processing Rubber. [Pg.45]

DeVOx A catalytic oxidation process for destroying volatile organic compounds in effluent gases. The catalyst contains a non-noble metal and can easily be regenerated. Typical operating temperatures for 95 percent VOC conversion are 175 to 225°C for oxygenates, and 350°C for toluene. Developed in 1995 by Shell, Stork Comprimo, and CRI Catalysts. First installed in 1996 at Shell Nederland Chemie s styrene butadiene rubber facility at Pemis. [Pg.86]

The large demand for benzene is due to its use as a starting material in the production of polystyrene, acrylonitrile styrene butadiene rubber, nylons, polycarbonates and linear alkyl benzene detergent. All of these final chemical products that are suitable to form into consumer goods have multiple chemical transformations in various industrial processes to obtain them from benzene. Because the production of benzene does not involve a liquid adsorptive process on a zeolite, these processes are not described here but can be found in other sources. However, it is important to note that benzene is typically a large byproduct from an aromatics... [Pg.230]

Another large use of normal butenes in the petrochemical industry is in the production of 1,3-butadiene (CH2 = CH = CH = CH2). In the process, a mixture of n-butenes, air, and steam is passed over a catalyst at a temperature of 500°C to 600°C. Butadiene is used extensively to produce synthetic rubbers (see Isoprene) in polymerization reactions. The greatest use of butadiene is for styrene-butadiene rubber, which contains about a 3 1 ratio of butadiene to styrene. Butadiene is also used as a chemical intermediate to produce other synthetic organics such as chloroprene, for adhesives, resins, and a variety of polymers. [Pg.51]

Styrene-butadiene rubber, or E-SBR as it is known in manufacturing circles, was first developed in the 1930s. Known as Buna S, the compound was prepared by I.G. Farbenindustrie in Germany. Manufacturing styrene-butadiene rubber was through an emulsion polymerization process which produced a material that had a low reaction viscosity, yet had all the attributes of natural rubber. [Pg.93]

The Delta Mooney (A Mooney) test is an extension of the Mooney used on empirical grounds as a general indication of processibility for non-pigmented oil extended emulsion styrene/butadiene rubber. It quantifies the changes that occur in Mooney viscosity with time, either as the difference between viscosities recorded at two specified times or as the difference between the minimum viscosity recorded immediately after the commencement of the test and the subsequent maximum viscosity. Several alternative Delta Mooney values are defined depending on the times, whether minimum/maximum viscosity difference is used and whether or not the sample has been massed on a mill. Procedures for Delta Mooney are standardised in ISO 289-341, BS 903 Part A58-142 and in ASTM D334643. [Pg.74]

ASTM D3346, 2003. Processibility of emulsion SBR (styrene-butadiene Rubber) with the Mooney viscometer (Delta Mooney). [Pg.92]

The MABS copolymers are prepared by dissolving or dispersing polybuiadiene rubber in a methyl methacrylate—acrylonitrile—styrene monomer mixture. MBS polymers are prepared by grafting methyl methacrylate and styrene onto a styrene—butadiene rubber in an emulsion process. The product is a two-phase polymer useful as an impact modifier for rigid polytvinyl chloride). [Pg.990]

As a result of its saturated polymer backbone, EPDM is more resistant to oxygen, ozone, UV and heat than the low-cost commodity polydiene rubbers, such as natural rubber (NR), polybutadiene rubber (BR) and styrene-butadiene rubber (SBR). Therefore, the main use of EPD(M) is in outdoor applications, such as automotive sealing systems, window seals and roof sheeting, and in under-the-hood applications, such as coolant hoses. The main drawback of EPDM is its poor resistance to swelling in apolar fluids such as oil, making it inferior to high-performance elastomers, such as fluoro, acrylate and silicone elastomers in that respect. Over the last decade thermoplastic vulcanisates, produced via dynamic vulcanisation of blends of polypropylene (PP) and EPDM, have been commercialised, combining thermoplastic processability with rubber elasticity [8, 9]. [Pg.208]


See other pages where Styrene-butadiene rubber processability is mentioned: [Pg.979]    [Pg.979]    [Pg.23]    [Pg.231]    [Pg.49]    [Pg.514]    [Pg.634]    [Pg.54]    [Pg.579]    [Pg.579]    [Pg.529]    [Pg.464]    [Pg.697]    [Pg.987]    [Pg.988]    [Pg.1336]    [Pg.548]    [Pg.81]    [Pg.231]    [Pg.102]    [Pg.96]    [Pg.267]    [Pg.96]    [Pg.251]    [Pg.130]    [Pg.131]    [Pg.340]    [Pg.94]    [Pg.24]   
See also in sourсe #XX -- [ Pg.29 , Pg.30 , Pg.31 , Pg.32 , Pg.33 , Pg.34 , Pg.35 , Pg.36 , Pg.45 ]




SEARCH



Rubber processing

Rubbers processability

Styrene process

Styrene-butadiene

Styrene-butadiene rubber

© 2024 chempedia.info