Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure product distribution

Poly(methyl methaciylate-co-phenyl methacrylate) 9, 18, 47, 88 mol% PMA Ambient to 500 CO 2, isobutene, ketene, formaldehyde, methanol, methyl methacrylate, phenyl methacrylate, chain fragments including six-membered anhydride ring structures. Product distribution varies with copolymer composition with non-monomer products most pronounced at low PMA contents 314... [Pg.492]

The product distribution appears to depend on the radiation used for quinone excitation, the structure of the quinone, and the quinone—alkene ratio. In the example cited, l,4-ben2oquinone gives only the spirooxetane, whereas chlorarul gives both products in amounts related to the ratio of starting materials... [Pg.409]

The first possibility envisages essentially the same mechanism as for the second-order process, but with Bt2 replacing solvent in the rate-determining conversion to an ion pair. The second mechanism pictures Bt2 attack on a reversibly formed ion-pair intermediate. The third mechanism postulates collide of a ternary complex tiiat is structurally similar to the initial charge-transfer complex but has 2 1 bromine alkene stoichiometry. There are very striking similarities between the second-order and third-order processes in terms of magnitude of p values and product distribution. In feet, there is a quantitative correlation between the rates of the two processes over a broad series of alkenes, which can be expressed as... [Pg.365]

Surface evaporation can be a limiting factor in the manufacture of many types of products. In the drying of paper, chrome leather, certain types of synthetic rubbers and similar materials, the sheets possess a finely fibrous structure which distributes the moisture through them by capillary action, thus securing very rapid diffusion of moisture from one point of the sheet to another. This means that it is almost impossible to remove moisture from the surface of the sheet without having it immediately replaced by capillary diffusion from the interior. The drying of sheetlike materials is essentially a process of surface evaporation. Note that with porous materials, evaporation may occur within the solid. In a porous material that is characterized by pores of diverse sizes, the movement of water may be controlled by capillarity, and not by concentration gradients. [Pg.131]

Another way to assess thiophene s reactivity is to compare the intermediate ions formed by addition of N02. Examine the structures, charge distributions and electrostatic potential maps of thiophene+nitronium at C2 and thiophene+nitronium at C3. Draw all of the resonance contributors needed to describe these structures. Which, if either, better delocalizes the positive charge Compare the energies of the two intermediates. Which product should form preferentially if the reaction is under kinetic control Are these results consistent with FMO theory ... [Pg.215]

There is some debate in the literature as to the actual mechanism of the Beirut reaction. It is not clear which of the electrophilic nitrogens of BFO is the site of nucleophilic attack or if the reactive species is the dinitroso compound 10. In the case of the unsubstituted benzofurazan oxide (R = H), the product is the same regardless of which nitrogen undergoes the initial condensation step. When R 7 H, the nucleophilic addition step determines the structure of the product and, in fact, isomeric mixtures of quinoxaline-1,4-dioxides are often observed. One report suggests that N-3 of the more stable tautomer is the site of nucleophilic attack in accord with observed reaction products. However, a later study concludes that the product distribution can be best rationalized by invoking the ortho-dinitrosobenzene form 10 as the reactive intermediate. [Pg.505]

Whereas exo-norbornene oxide rearranges to nortricyclanol on treatment with strong base through transannular C-H insertion (Scheme 5.11), endo-norbornene oxide 64 gives norcamphor 65 as the major product (Scheme 5.14) [15, 22]. This product arises from 1,2-hydrogen migration very little transannular rearrangement is observed. These two reaction pathways are often found to be in competition with one another, and subtle differences in substrate structure, and even in the base employed, can have a profound influence on product distribution. [Pg.153]

Long before their theories were supported by computations, organic chemists found a way to use resonance structures to explain the product distribution in electrophilic substitution. Thus, the Lewis structure for phenol is regarded as a resonance hybrid of the following structures ... [Pg.863]

There is no structure for an elongated core intermediate between that shown in Fig. 11, with three inner-core spher-ons, and that shown in Fig. 12, with four. The transition between these structures is calculated by use of Eq. 1, with n, = 22, to occur at nt = 69, that is, at N = 138. It is accordingly an expectation from the close-packed-spheron theory that, as observed, 90Ac13a2- 7 (formed by bombardment of Re- 20 with 11-Mev protons) gives a three-humped fission product distribution curve (23), which has been interpreted (24) as showing that both symmetric fission and asymmetric fission occur. [Pg.824]

The literature in this field is confusing because of a somewhat haphazard method of nomenclature that has arisen historically. This is compounded by some mistakes in structure determination, reported in early papers, and which are occasionally quoted. The first part of this chapter deals with nomenclature and with a brief overview of early work. Subsequent sections deal with the formation and metabolism of di-D-fructose dianhydrides by micro-organisms, and the formation of dihexulose dianhydrides by protonic and thermal activation. In relation to the latter topic, recent conclusions regarding the nature of sucrose caramels are covered. Other sections deal with the effects of di-D-fructose dianhydrides upon the industrial production of sucrose and fructose, and the possible ways in which these compounds might be exploited. An overview of the topic of conformational energies and implications for product distributions is also presented. [Pg.208]

In the course of studying the bromination reactions of the bicyclic systems we noticed that the reaction temperature has a dramatic influence on the product distribution. Increasing of the temperature gives non-rearranged reaction products (refs. 1,2). For this reason, we submitted 1 to high temperature bromination. To a solution of 1 in decalin at 150 C was added a hot solution of bromine in decalin in one portion. The colour of bromine disappeared immediately. After silica gel chromatography followed by fractional crystallization we isolated four products 2-6 in yields 8, 35, 37, and 9 % respectively. The structure of these compounds has been elucidated on the basis of spectral data by iH NMR and NMR experiments and by comparison with those reported in the literature. Symmetrical endo-c/5-isomer 6 has been observed for the first time. Studies concerning the mechanism of syn-addition show that the syn-adduct can arise either from direct... [Pg.67]

Katsumura, Kitaura and their coworkers [74] found and discussed the high reactivity of vinylic vs allylic hydrogen in the photosensitized reactions of twisted 1,3-dienes in terms of the interaction in the perepoxide structure. Yoshioka and coworkers [75] investigated the effects of solvent polarity on the product distribution in the reaction of singlet oxygen with enolic tautomers of 1,3-diketones and discussed the role of the perepoxide intermediate or the perepoxide-Uke transition state to explain their results. A recent review of the ene reactions of was based on the significant intervention of the perepoxide structure [76], which can be taken as a quasi-intermediate. [Pg.38]

Table 5 shows HDS product distributions over several catalysts prepared by using the molybdenum-nickel cluster 2. Sulfur content in decane was adjusted to 5.0 wt% in these experiments. MoNi/NaY was found to be more active than MoNi/Al203. It is to be noted that during the high temperature pretreatment the original cluster structure would have been changed. However, the high activity of the MoNi/NaY catalyst for benzothiophene HDS is probably due to the formation of active sites derived from this particular mixed metal cluster. [Pg.113]

In summary, the H + HD reaction shows little sign of resonance scattering in the ICS. Furthermore, the product distributions without angle resolution show no unusual behavior as functions of energy that might indicate resonance behavior. On the other hand, the forward peaking in the angular product distribution does appear to reveal resonance structure. Since time-delay analysis is at present not possible in a molecular beam experiment, it is the combination of a sharp forward peak with the unusual... [Pg.78]

The main focus of this work is on the influence of metal introduction into zeolites on the ring-opening activity and selectivity. The effects of zeolite acidity and structure on the product distribution will be discussed as well. Decalin is used as a representative molecule for ring opening of dinaphthenes formed during hydrogenation of diaromatics in middle distillates. [Pg.280]

If the two competing reactions have the same concentration dependence, then the catalyst pore structure does not influence the selectivity because at each point within the pore structure the two reactions will proceed at the same relative rate, independent of the reactant concentration. However, if the two competing reactions differ in the concentration dependence of their rate expressions, the pore structure may have a significant effect on the product distribution. For example, if V is formed by a first-order reaction and IF by a second-order reaction, the observed yield of V will increase as the catalyst effectiveness factor decreases. At low effectiveness factors there will be a significant gradient in the reactant concentration as one moves radially inward. The lower reactant concentration within the pore structure would then... [Pg.469]

Work with ultrathin and thick fringe-free platinum films has shown that not only does the product distribution change with catalyst structure, but the specific rate of raction (per unit platinum area) changes also (30). The data in Fig. 12 for the reaction of 2-methylpentane and n-hexane show a decrease in the specific rate with increasing particle size. [Pg.43]

Unlike hydrogen these reactions do not appear to be activated. In addition the products distributions observed indicate comparable rates for multiple adduct formation. The mass complexity, relatively high ionization potentials, and the known prevalent dissociative ionization of the fully saturated carbonyls(42) has possibly caused the failure of some initial saturation experi ments(43). The ability to synthesize the stable carbonyl complexes will help this field significantly due to the vast amount of information available, especially their structures. [Pg.58]

Neutral and charged gold carbonyl species have also been observed on gold field emitter tips upon interaction with CO gas at room temperature in the presence of high electrostatic fields. The adsorbed complexes and the desorption pathways were identified using time-of-flight mass spectroscopy. [(CO)Au] species are more abundant than [Au(CO)2] species. The product distribution was rationalized by DF calculations of the electronic structure of the complexes.291... [Pg.297]

Temperature-programmed reduction combined with x-ray absorption fine-structure (XAFS) spectroscopy provided clear evidence that the doping of Fischer-Tropsch synthesis catalysts with Cu and alkali (e.g., K) promotes the carburization rate relative to the undoped catalyst. Since XAFS provides information about the local atomic environment, it can be a powerful tool to aid in catalyst characterization. While XAFS should probably not be used exclusively to characterize the types of iron carbide present in catalysts, it may be, as this example shows, a useful complement to verify results from Mossbauer spectroscopy and other temperature-programmed methods. The EXAFS results suggest that either the Hagg or s-carbides were formed during the reduction process over the cementite form. There appears to be a correlation between the a-value of the product distribution and the carburization rate. [Pg.120]


See other pages where Structure product distribution is mentioned: [Pg.403]    [Pg.403]    [Pg.473]    [Pg.89]    [Pg.140]    [Pg.211]    [Pg.57]    [Pg.76]    [Pg.79]    [Pg.260]    [Pg.221]    [Pg.149]    [Pg.322]    [Pg.275]    [Pg.278]    [Pg.41]    [Pg.67]    [Pg.140]    [Pg.133]    [Pg.291]    [Pg.89]    [Pg.43]    [Pg.48]    [Pg.51]    [Pg.62]    [Pg.323]    [Pg.76]    [Pg.4]    [Pg.208]    [Pg.411]    [Pg.78]    [Pg.17]   
See also in sourсe #XX -- [ Pg.39 , Pg.198 ]




SEARCH



Distributed production

Product distribution

Product structure

Production structure

Structural distributions

© 2024 chempedia.info