Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure factor semiconductors

Typical results for a semiconducting liquid are illustrated in figure Al.3.29 where the experunental pair correlation and structure factors for silicon are presented. The radial distribution function shows a sharp first peak followed by oscillations. The structure in the radial distribution fiinction reflects some local ordering. The nature and degree of this order depends on the chemical nature of the liquid state. For example, semiconductor liquids are especially interesting in this sense as they are believed to retain covalent bonding characteristics even in the melt. [Pg.132]

Because of the minimization of the number of dangling bonds semiconductor surfaces often show large displacements of the surface atoms from their bulk lattice positions. As a consequence these surfaces are also very open and the agreement is more in the range of 7 p factor values of approximately 0.2. Determination of the structure of semiconductor surfaces is reviewed in a recent article by Kahn [2.275]. [Pg.82]

Electrochemical reactions at semiconductor electrodes have a number of special features relative to reactions at metal electrodes these arise from the electronic structure found in the bulk and at the surface of semiconductors. The electronic structure of metals is mainly a function only of their chemical nature. That of semiconductors is also a function of other factors acceptor- or donor-type impurities present in bulk, the character of surface states (which in turn is determined largely by surface pretreatment), the action of light, and so on. Therefore, the electronic structure of semiconductors having a particular chemical composition can vary widely. This is part of the explanation for the appreciable scatter of experimental data obtained by different workers. For reproducible results one must clearly define all factors that may influence the state of the semiconductor. [Pg.250]

Molecular self-organization in solution depends critically on molecular structural features and on concentration. Molecular self-organization or aggregation in solution occurs at the critical saturation concentration when the solvency of the medium is reduced. This can be achieved by solvent evaporation, reduced temperature, addition of a nonsolvent, or a combination of all these factors. Solvato-chromism and thermochromism of conjugated polymers such as regioregular polythiophenes are two illustrative examples, respectively, of solubility and temperature effects [43-45]. It should therefore be possible to use these solution phenomena to pre-establish desirable molecular organization in the semiconductor materials before deposition. Our studies of the molecular self-assembly behavior of PQT-12, which leads to the preparation of structurally ordered semiconductor nanopartides [46], will be described. These PQT-12 nanopartides have consistently provided excellent FETcharacteristics for solution-processed OTFTs, irrespective of deposition methods. [Pg.90]

This completes the specification of the pseudopotential as a perturbation in a perfect crystal. We have obtained all of the matrix elements between the plane-wave states, which arc the electronic states of zero order in the pseudopotcntial. We have found that they vanish unless the difference in wave number between the two coupled states is a lattice wave number, and in that case they are given by the pseudopotential form factor for that wave number difference by Eq. (16-7), assuming that there is only one ion per primitive cell, as in the face-centered and body-centered cubic structures. We discuss only cases with more than one ion per primitive cell when we apply pseudopotential theory to semiconductors in Chapter 18. Tlicn the matrix element will be given by a structure factor, Eq. (16-17),... [Pg.366]

In addition to systems with one-dimensional metallic properties, there are a considerably larger number of planar metal complexes where stacking interactions in the solid state give rise to unusual properties including highly anisotropic conductivity behavior but where electronic or structural factors lead to thermally activated conductivities 10, 11), Such one-dimensional semiconductors constitute an important area of study within the general topic of solids with one-dimensional interactions, and their study has provided much useful information regarding structure-property relationships. [Pg.2]

K. Furuya, Dependence of linewidth enhancement factor a on waveguide structure in semiconductor lasers. Electron Lett. 21 200 (1985). [Pg.142]

Interconnect. Three-dimensional structures require interconnections between the various levels. This is achieved by small, high aspect-ratio holes that provide electrical contact. These holes include the contact fills which connect the semiconductor silicon area of the device to the first-level metal, and the via holes which connect the first level metal to the second and subsequent metal levels (see Fig. 13.1). The interconnect presents a major fabrication challenge since these high-aspect holes, which may be as small as 0.25 im across, must be completely filled with a diffusion barrier material (such as CVD titanium nitride) and a conductor metal such as CVD tungsten. The ability to fill the interconnects is a major factor in selecting a thin-film deposition process. [Pg.349]

Chemical and electrochemical techniques have been applied for the dimensionally controlled fabrication of a wide variety of materials, such as metals, semiconductors, and conductive polymers, within glass, oxide, and polymer matrices (e.g., [135-137]). Topologically complex structures like zeolites have been used also as 3D matrices [138, 139]. Quantum dots/wires of metals and semiconductors can be grown electrochemically in matrices bound on an electrode surface or being modified electrodes themselves. In these processes, the chemical stability of the template in the working environment, its electronic properties, the uniformity and minimal diameter of the pores, and the pore density are critical factors. Typical templates used in electrochemical synthesis are as follows ... [Pg.189]

The experimental studies of the surface properties of monocrystals of oxides of various metals recently conducted at well-controlled conditions [32, 210] enable one to proceed with detailed analysis of separate effects of various factors on characteristics of semiconductor gas sensors. In this direction numerous interesting results have been obtained regarding the fact of various electrophysical characteristics of monocrystalline adsorbents on the value of adsorption-related response. Among these characteristics there are crystallographic orientation of facets [211], availability of structural defects, the disorder in stoichiometry [32], application of metal additives, etc. These results are very useful while manufacturing sensors for specific gases with required characteristics. [Pg.93]

To further substantiate the proposed model, they have carried out some investigations connected with modification of semiconductor electron subsystem [174, 175]. Temperature is one of the important factors. Having no effect on the electron emission from the metal under the action of RGMAs, temperature strongly affects the current-transfer processes at the metal - semiconductor contacts. The impact of temperature on the interaction of RGMAs with Au/ZnO structures can be evaluated as follows. [Pg.335]

The fundamental reason for the uneven distribution of reactions is that the rate of electrochemical reactions on a semiconductor is sensitive to the radius of curvature of the surface. This sensitivity can either be associated with the thickness of the space charge layer or the resistance of the substrate. Thus, when the rate of the dissolution reactions depends on the thickness of the space charge layer, formation of pores can in principle occur on a semiconductor electrode. The specific porous structures are determined by the spatial and temporal distributions of reactions and their rates which are affected by the geometric elements in the system. Because of the intricate relations among the kinetic factors and geometric elements, the detail features of PS morphology and the mechanisms for their formation are complex and greatly vary with experimental conditions. [Pg.210]

The empirical approach [7] was by far the most fruitful first attempt. The idea was to fit a few Fourier coefficients or form factors of the potential. This approach assumed that the pseudopotential could be represented accurately with around three Fourier form factors for each element and that the potential contained both the electron-core and electron-electron interactions. The form factors were generally fit to optical properties. This approach, called the Empirical Pseudopotential Method (EPM), gave [7] extremely accurate energy band structures and wave functions, and applications were made to a large number of solids, especially semiconductors. [8] In fact, it is probably fair to say that the electronic band structure problem and optical properties in the visible and UV for the standard semiconductors was solved in the 1960s and 1970s by the EPM. Before the EPM, even the electronic structure of Si, which was and is the prototype semiconductor, was only partially known. [Pg.251]


See other pages where Structure factor semiconductors is mentioned: [Pg.232]    [Pg.124]    [Pg.52]    [Pg.254]    [Pg.424]    [Pg.376]    [Pg.386]    [Pg.93]    [Pg.110]    [Pg.226]    [Pg.52]    [Pg.206]    [Pg.110]    [Pg.56]    [Pg.332]    [Pg.192]    [Pg.479]    [Pg.247]    [Pg.255]    [Pg.477]    [Pg.93]    [Pg.1053]    [Pg.55]    [Pg.270]    [Pg.295]    [Pg.300]    [Pg.75]    [Pg.214]    [Pg.9]    [Pg.12]    [Pg.464]    [Pg.464]   
See also in sourсe #XX -- [ Pg.69 , Pg.70 ]




SEARCH



Semiconductor structuring

Structural factors

Structure factor

Structure factor silicon semiconductors

© 2024 chempedia.info