Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structural cluster model

In the same paper (Yamamoto 1996) an authoritative description is given of several interrelated topics such as super-space group determination, structure determination, indexing of diffraction patterns of quasicrystals, polygonal tiling, icosahedral tiling, structure factor calculation, description of quasicrystal structures, cluster models of quasicrystals. [Pg.203]

Figure 6.11 Structural cluster models for amylopectin as proposed by (a) French 67 (b) Robin et al. 285 and (c) Manners and Matheson.290 1 and 2 in the model represent crystalline and amorphous regions, respectively. Figure 6.11 Structural cluster models for amylopectin as proposed by (a) French 67 (b) Robin et al. 285 and (c) Manners and Matheson.290 1 and 2 in the model represent crystalline and amorphous regions, respectively.
One of the first studies of PNC physical aging was published by Lee andLichtenhan [1998] for epoxy containing w = 0 to 9wt% of polyhedral oligomeric silsesquiox-ane (POSS). The presence of POSS increased Tg and the relaxation time thus, the nanoflller slowed down the molecular dynamics. For amorphous polymers at Tpcluster volume fraction depends on temperature ... [Pg.593]

Fig. 6.3 Cluster model structure for Ru99Se54 showing the selenium bonding onto the ruthenium clusters (a) with a statistical distribution (b) with an ordered positioning. (Adapted with permission from [24]. Copyright 2009, American Chemical Society)... Fig. 6.3 Cluster model structure for Ru99Se54 showing the selenium bonding onto the ruthenium clusters (a) with a statistical distribution (b) with an ordered positioning. (Adapted with permission from [24]. Copyright 2009, American Chemical Society)...
We used DFT to optimize the geometries of various Hammett bases on cluster models of zeolite Brpnsted sites. For p-fluoronitrobenzene and p-nitrotoluene, two indicators with strengths of ca. -12 for their conjugate acids, we saw no protonation in the energy minimized structures. Similar calculations using the much more strongly basic aniline andogs of these molecules demonstrated proton transfer from the zeolite cluster to the base. We carried out F and experimental NMR studies of these same Hammett indicators adsorbed into zeolites HY and HZSM-5. [Pg.576]

Espelid and B0rve [100] have recently explored the structure, stabihty, and vibrational properties of carbonyls formed at low-valent chromium boimd to sibca by means of simple cluster models and density fimctional theory (DFT) [101]. These models, although reasonable, do not take into consideration the structural situations discussed before but they are a useful basis for discussion. They foimd that the pseudo-tetrahedral mononuclear Cr(II) site is characterized by the highest coordination energy toward CO. [Pg.19]

When a supported metal on an oxide is prepared from an adsorbed precursor incorporating a noble metal bonded to an oxophilic metal, the result may be small noble metal clusters, each more-or-less nested in a cluster of atoms of the oxophilic metal, which is cationic and anchored to the support through metal-oxygen bonds [44,45]. The simplest such structure is modeled on the basis of EXAFS data as Re4Pt2, made from Re2Pt(CO)i2 (Fig. 6) [45]. [Pg.224]

Pacchioni G, Illas F. 2003. Electronic structure and chemisorption properties of supported metal clusters model calculations. In Wieckowski A, Savinova ER, Vayenas CG. editors. Catalysis and Electrocatalysis at Nanoparticle Surfaces. New York Marcel Dekker. [Pg.561]

This picture was found to be consistent with the comparison of Raman spectra and optical gap of a-C H films deposited by RFPECVD, with increasing self-bias [41], It was found that both, the band intensity ratio /d//g and the peak position (DQ increased upon increasing self-bias potential. At the same time, a decrease on the optical gap was observed. Within the cluster model for the electronic structure of amorphous carbon films, a decrease in the optical gap is expected for the increase of the sp -carbon clusters size. From this, one can admit that in a-C H films, the modifications mentioned earlier in the Raman spectra really correspond to an increase in the graphitic clusters size. [Pg.247]

From the theoretical standpoint the above issues are addressed by quantum chemistry. On the basis of calculations of various cluster models [191] the properties of surfaces of solid body are being studied as well as issues dealing with interaction of gas with the surface of adsorbent. However, fairly good results have been obtained in this area only to calculate adsorption on metals. The necessity to account for more complex structure of the adsorption value as well as availability of various functional groups on the surface of adsorbent in case of adsorption on semiconductors geometrically complicates such calculations. [Pg.89]

DFT method combined with a cluster model approach was compared regarding its suitability for describing both structures and energy profiles. This study shows that the relative stability and geometry depend on the cluster sizes in agreement with previous studies [15] but shows that the energy barrier heights of the reaction processes are not affected. [Pg.372]

Fig. 4 Proposed defect cluster model in as-made zeolites with quaternary ammonium cations as structure directing agents (SDAs) hydrogen bond distances of 1.68 A are determined experimentally from the H NMR chemical shift of 10.2 ppm X and Y are atoms not further specified in the SDA the interaction between the SDA and the SiO- group is assumed based on bond valence arguments (see text)... Fig. 4 Proposed defect cluster model in as-made zeolites with quaternary ammonium cations as structure directing agents (SDAs) hydrogen bond distances of 1.68 A are determined experimentally from the H NMR chemical shift of 10.2 ppm X and Y are atoms not further specified in the SDA the interaction between the SDA and the SiO- group is assumed based on bond valence arguments (see text)...
The allyl-resonance stabilized E- and Z-pent-l,3-dienyl-2-cations (22 and 23) are the smallest member of vinyl cations observed as persistent species in superacid solution 49 These are difficult to generate experimentally50 but structures with only five heavy atoms are suitable candidates for coupled cluster model calculations. A challenging task of quantum chemistry was to assign the 13C NMR spectrum of the mixture of isomers (Fig. 3), which exhibits pairs of signals of 22 and 23 which differ only by a few ppm, to the chemical shifts for the specific carbon atoms of the E- and Z-isomers, respectively. [Pg.135]

The requirements for Raman resonance that must be fulfilled are the following (120,121) (a) total symmetry of the vibrations with respect to the absorbing center, and (b) same molecular deformation induced by the electronic and vibrational excitations. Quantum chemical calculations (41) of the vibrational frequencies and the electronic structure of shell-3 cluster models allowed the assignment of the main vibrational features, as shown in Fig. 7. The 1125 cm-1 band is unequivocally assigned to the symmetric stretching of the Ti04 tetrahedron. [Pg.43]

Ludwig s (2001) review discusses water clusters and water cluster models. One of the water clusters discussed by Ludwig is the icosahedral cluster developed by Chaplin (1999). A fluctuating network of water molecules, with local icosahedral symmetry, was proposed by Chaplin (1999) it contains, when complete, 280 fully hydrogen-bonded water molecules. This structure allows explanation of a number of the anomalous properties of water, including its temperature-density and pressure-viscosity behaviors, the radial distribution pattern, the change in water properties on supercooling, and the solvation properties of ions, hydrophobic molecules, carbohydrates, and macromolecules (Chaplin, 1999, 2001, 2004). [Pg.20]

Quantum-chemical cluster models, 34 131-202 computer programs, 34 134 methods, 34 135-138 for chemisorption, 34 135 the local approach, 34 132 molecular orbital methods, 34 135 for surface structures, 34 135 valence bond method, 34 135 Quantum chemistry, heat of chemisorption determination, 37 151-154 Quantum conversion, in chloroplasts, 14 1 Quantum mechanical simulations bond activation, 42 2, 84—107 Quasi-elastic neutron scattering benzene... [Pg.185]

Maltese cross (Blanshard, 1979). The crystallinity of starch is caused essentially by amylopectin pol)Tner interactions (Banks and Greenwood, 1975 Biliaderis, 1998 Donald, 2004 Hizukuri, 1996). An illustration of currently accepted starch granule structure is given in Fig. 5.5. It is believed that the outer branches of amylopectin molecules interact to arrange themselves into "crystallites" forming crystalline lamellae within the granule (Fig. 5.5 Tester et al., 2004). A small number of amylose polymers may also interact with amylopectin crystallites. This hypothetical structure has been derived based on the cluster model of amylopectin (Hizukuri, 1986 Robin et ah, 1974 Fig. 5.1). [Pg.228]

Only one class modeling method is conmonly applied to analytical data and this is the SIMCA method ( ) of pattern recognition. In this method the class structure (cluster) is approximated by a point, line, plane, or hyperplane. Distances around these geometric functions can be used to define volumes where the classes are located in variable space, and these volumes are the basis for the classification of unknowns. This method allows the development of information beyond class assignment ( ). [Pg.246]


See other pages where Structural cluster model is mentioned: [Pg.9]    [Pg.9]    [Pg.2221]    [Pg.2222]    [Pg.2222]    [Pg.2223]    [Pg.349]    [Pg.471]    [Pg.171]    [Pg.315]    [Pg.30]    [Pg.344]    [Pg.144]    [Pg.102]    [Pg.7]    [Pg.171]    [Pg.179]    [Pg.200]    [Pg.166]    [Pg.173]    [Pg.175]    [Pg.420]    [Pg.241]    [Pg.343]    [Pg.90]    [Pg.11]    [Pg.92]    [Pg.226]    [Pg.163]    [Pg.597]    [Pg.604]    [Pg.85]   
See also in sourсe #XX -- [ Pg.593 ]




SEARCH



Cluster fractal structure lattice structural models

Cluster model electronic structure

Cluster models structural transitions

Cluster structures

Flickering cluster model structure

Fluorite structure defect clusters/cluster models

Multiplet structures model clusters

Structures Clustering

© 2024 chempedia.info