Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stress titanium

Stress- ures of titanium alloys have been assigned to hot-Corroslon salt SCC to date, laboratory studies indicate that Cracking hot-salt SCC may occur on highly stressed titanium alloys with halide-containing surface residues after exposure in the 210 to 510 °C (410 to 950 °F) range. [Pg.448]

An alloy ideally should be homogeneous, but in practise it can contain segregations, for example hard alpha in titanium. Beeause of their different mechanieal properties sueh segregations can be the origin of eracks when the component is operated near to its temperature and stress limits. [Pg.990]

Propellants cast into rockets are commonly case-bonded to the motors to achieve maximum volumetric loading density. The interior of the motor is thoroughly cleaned, coated using an insulating material, and then lined with a composition to which the propellant binder adheres under the environmental stresses of the system. The insulation material is generally a mbber-type composition, filled with siUca, titanium dioxide, or potassium titanate. SiUca-filled nitrate mbber and vulcanizable ethylene—propylene mbber have been used. The liner generally consists of the same base polymer as is used in the propellant. It is usually appHed in a thin layer, and may be partially or fully cured before the propellant is poured into the rocket. [Pg.49]

The apparent viscosity, defined as du/dj) drops with increased rate of strain. Dilatant fluids foUow a constitutive relation similar to that for pseudoplastics except that the viscosities increase with increased rate of strain, ie, n > 1 in equation 22. Dilatancy is observed in highly concentrated suspensions of very small particles such as titanium oxide in a sucrose solution. Bingham fluids display a linear stress—strain curve similar to Newtonian fluids, but have a nonzero intercept termed the yield stress (eq. 23) ... [Pg.96]

Nickel—Copper. In the soHd state, nickel and copper form a continuous soHd solution. The nickel-rich, nickel—copper alloys are characterized by a good compromise of strength and ductihty and are resistant to corrosion and stress corrosion ia many environments, ia particular water and seawater, nonoxidizing acids, neutral and alkaline salts, and alkaUes. These alloys are weldable and are characterized by elevated and high temperature mechanical properties for certain appHcations. The copper content ia these alloys also easure improved thermal coaductivity for heat exchange. MONEL alloy 400 is a typical nickel-rich, nickel—copper alloy ia which the nickel content is ca 66 wt %. MONEL alloy K-500 is essentially alloy 400 with small additions of aluminum and titanium. Aging of alloy K-500 results in very fine y -precipitates and increased strength (see also Copper alloys). [Pg.6]

Other alloys have been developed for use in particular corrosive environments at high temperatures. Several of these are age-hardenable alloys which contain additions of aluminum and titanium. Eor example, INCONEL alloys 718 and X-750 [11145-80-5] (UNS N07750) have higher strength and better creep and stress mpture properties than alloy 600 and maintain the same good corrosion and oxidation resistance. AHoy 718 exhibits excellent stress mpture properties up to 705°C as well as good oxidation resistance up to 980°C and is widely used in gas turbines and other aerospace appHcations, and for pumps, nuclear reactor parts, and tooling. [Pg.7]

Titanium is resistant to nitric acid from 65 to 90 wt % and ddute acid below 10 wt %. It is subject to stress—corrosion cracking for concentrations above 90 wt % and, because of the potential for a pyrophoric reaction, is not used in red filming acid service. Tantalum exhibits good corrosion resistance to nitric acid over a wide range of concentrations and temperatures. It is expensive and typically not used in conditions where other materials provide acceptable service. Tantalum is most commonly used in appHcations where the nitric acid is close to or above its normal boiling point. [Pg.45]

Materials of Construction and Operational Stress. Before a centrifugal separation device is chosen, the corrosive characteristics of the Hquid and soHds as weU as the cleaning and saniti2ing solutions must be deterrnined. A wide variety of materials may be used. Most centrifuges are austenitic stainless steels however, many are made of ordinary steel, mbber or plastic coated steel. Monel, HasteUoy, titanium, duplex stainless steel, and others. The solvents present and of course the temperature environment must be considered in elastomers and plastics, including composites. [Pg.404]

Types 321 and 347 have additions of titanium and niobium, respectively, and are used in welding appHcations and high temperature service under corrosive conditions. Type 304L may be used as an alternative for Types 321 and 347 in welding (qv) and stress-reHeving appHcations below 426°C. [Pg.399]

Titanium does not stress-crack in environments that cause stress-cracking in other metal alloys, eg, boiling 42% MgCl2, NaOH, sulfides, etc. Some of the aluminum-rich titanium alloys are susceptible to hot-salt stress-cracking. However, this is a laboratory observation and has not been confirmed in service. Titanium stress-cracks in methanol containing acid chlorides or sulfates, red Aiming nitric acid, nitrogen tetroxide, and trichloroethylene. [Pg.104]

At elevated temperatures where titanium alloys could be the adherend of choice, a different failure mechanism becomes important. The solubility of oxygen is very high in titanium at high temperatures (up to 25 at.%), so the oxygen in a CAA or other surface oxide can and does dissolve into the metal (Fig. 12). This diffusion leaves voids or microcracks at the metal-oxide interface and embrittles the surface region of the metal (Fig. 13). Consequently, bondline stresses are concentrated at small areas at the interface and the joint fails at low stress levels [51,52]. Such phenomena have been observed for adherends exposed to 600°C for as little as 1 h or 300°C for 710 h prior to bonding [52] and for bonds using... [Pg.961]

Surface cleaning/etches. As with aluminum and titanium, the most critical test for bonded steel joints is durability in hostile (i.e., humid) environments. The fact that the problem is a serious one for steel was illustrated in a study [117] that compared solvent cleaned (smooth) 1010 cold-rolled steel surfaces with FPL aluminum (microrough) substrates. Although the dry lap-shear strengths were not markedly different, stressed lap-shear joints of steel adherends that were exposed to a humid environment failed in less than 30 days, whereas the aluminum joints lasted for more than 3000 days. [Pg.985]


See other pages where Stress titanium is mentioned: [Pg.80]    [Pg.109]    [Pg.160]    [Pg.318]    [Pg.392]    [Pg.80]    [Pg.109]    [Pg.160]    [Pg.318]    [Pg.392]    [Pg.252]    [Pg.88]    [Pg.88]    [Pg.114]    [Pg.123]    [Pg.398]    [Pg.120]    [Pg.120]    [Pg.146]    [Pg.149]    [Pg.150]    [Pg.151]    [Pg.229]    [Pg.5]    [Pg.7]    [Pg.124]    [Pg.404]    [Pg.53]    [Pg.365]    [Pg.104]    [Pg.128]    [Pg.446]    [Pg.274]    [Pg.481]    [Pg.188]    [Pg.263]    [Pg.195]    [Pg.379]    [Pg.985]    [Pg.160]    [Pg.96]    [Pg.21]    [Pg.403]   
See also in sourсe #XX -- [ Pg.107 ]




SEARCH



Titanium alloys in stress-corrosion cracking

Titanium alloys stress-corrosion cracking

Titanium stress-corrosion cracking

© 2024 chempedia.info