Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stochastic particle approach

Detailed modeling study of practical sprays has a fairly short history due to the complexity of the physical processes involved. As reviewed by O Rourke and Amsden, 3l() two primary approaches have been developed and applied to modeling of physical phenomena in sprays (a) spray equation approach and (b) stochastic particle approach. The first step toward modeling sprays was taken when a statistical formulation was proposed for spray analysis. 541 Even with this simplification, however, the mathematical problem was formidable and could be analyzed only when very restrictive assumptions were made. This is because the statistical formulation required the solution of the spray equation determining the evolution of the probability distribution function of droplet locations, sizes, velocities, and temperatures. The spray equation resembles the Boltzmann equation of gas dynamics[542] but has more independent variables and more complex terms on its right-hand side representing the effects of nucleations, collisions, and breakups of droplets. [Pg.325]

The first maj or extension of the stochastic particle method was made by O Rourke 5501 who developed a new method for calculating droplet collisions and coalescences. Consistent with the stochastic particle method, collisions are calculated by a statistical, rather than a deterministic, approach. The probability distributions governing the number and nature of the collisions between two droplets are sampled stochastically. This method was initially applied to diesel sprays13171... [Pg.326]

An important property of the stochastic version of compartmental models with linear rate laws is that the mean of the stochastic version follows the same time course as the solution of the corresponding deterministic model. That is not true for stochastic models with nonlinear rate laws, e.g., when the probability of transfer of a particle depends on the state of the system. However, under fairly general conditions the mean of the stochastic version approaches the solution of the deterministic model as the number of particles increases. It is important to emphasize for the nonlinear case that whereas the deterministic formulation leads to a finite set of nonlinear differential equations, the master equation... [Pg.262]

The main practical problem in the implementation of the mixed quantum-classical dynamics method described in Section 4.2.4 is the nonlocal nature of the force in the equation of motion for the stationary-phase trajectories (Equation 4.29). Surface hopping methods provide an approximate, intuitive, stochastic alternative approach that uses the average dynamics of swarm of trajectories over the coupled surfaces to approximate the behavior of the nonlocal stationary-phase trajectory. The siu--face hopping method of Tully and Preston and Tully describes nonadiabatic dynamics even for systems with many particles. Commonly, the nuclei are treated classically, but it is important to consider a large niunber of trajectories in order to sample the quantum probability distribution in the phase space and, if necessary, a statistical distribution over states. In each of the many independent trajectories, the system evolves from the initial configuration for the time necessary for the description of the event of interest. The integration of a trajec-... [Pg.184]

The basic idea of the MC approach lies in the discrete representation of the joint PDF by an ensemble of stochastic particles. Each particle carries an array of properties denoting position, velocity and scalar composition. During a fractional time stepping procedure [6] the particles are submitted to certain deterministic and stochastic processes changing each particle s set of properties in accordance with the different terms in the PDF evolution equation. Afterwards the statistical moments may be derived in the simplest case by averaging from the ensemble of particles. [Pg.255]

The geminal ansatz still requires more effort than the standard one-electron approach of the independent particle model. It is therefore usually restricted to small molecules for feasibility reasons. As an example how the nonlinear optimization problem can be handled we refer to the stochastic variational approach [340]. However, the geminal ansatz as presented above has the useful feature that all elementary particles can be treated on the same footing. This means that we can actually use such an ansatz for total wave functions without employing the Born-Oppenheimer approximation, which exploits the fact that nuclei are much heavier than electrons. Hence, electrons and nuclei can be treated on the same footing [340-342] and even mixed approaches are possible, where protons and electrons are treated in the external field of heavier nuclei [343-346]. The integrals required for the matrix elements are hardly more complicated than those over one-electron Gaussians [338,339,347]. [Pg.292]

The integration of the single-particle joint-PDF transport equation (12.4.1-11) is tedious. Computer requirements for standard CFD techniques rise exponentially with the dimensionality of the joint-PDF. Therefore, micro-PDF methods commonly use a Monte-Carlo approach [Spielman and Levenspiel, 1965 Kattan and Adler, 1967, 1972 Pope, 1981]. A deterministic system is constructed with stochastic particles whose joint-PDF evolves in the same way as the joint-PDF of fluid particles. The trajectories of the so-called conditional particles define a formal solution of the joint-PDF transport equation (12.4.1-11). Ramkrishna [2000] presents details on the computational methods. [Pg.653]

Another difference is related to the mathematical formulation. Equation (1) is deterministic and does not include explicit stochasticity. In contrast, the equations of motion for a Brownian particle include noise. Nevertheless, similar algorithms are adopted to solve the two differential equations as outlined below. The most common approach is to numerically integrate the above differential equations using small time steps and preset initial values. [Pg.266]

The brief review of the newest results in the theory of elementary chemical processes in the condensed phase given in this chapter shows that great progress has been achieved in this field during recent years, concerning the description of both the interaction of electrons with the polar medium and with the intramolecular vibrations and the interaction of the intramolecular vibrations and other reactive modes with each other and with the dissipative subsystem (thermal bath). The rapid development of the theory of the adiabatic reactions of the transfer of heavy particles with due account of the fluctuational character of the motion of the medium in the framework of both dynamic and stochastic approaches should be mentioned. The stochastic approach is described only briefly in this chapter. The number of papers in this field is so great that their detailed review would require a separate article. [Pg.173]

For small colloidal particles, which are subject to random Brownian motion, a stochastic approach is more appropriate. These methods are based on the formulation and solution of the diffusion equation in a force field, in the presence of convection... [Pg.209]

Theoretical investigations of the problem were carried out on the base of the mathematical model, combining both deterministic and stochastic approaches to turbulent combustion of organic dust-air mixtures modeling. To simulate the gas-phase flow, the k-e model is used with account of mass, momentum, and energy fluxes from the particles phase. The equations of motion for particles take into account random turbulent pulsations in the gas flow. The mean characteristics of those pulsations and the probability distribution functions are determined with the help of solutions obtained within the frame of the k-e model. [Pg.225]

The motion of polydispersed particulate phase is modeled making use of a stochastic approach. A group of representative model particles is distinguished. Motion of these particles is simulated directly taking into account the influence of the mean stream of gas and pulsations of parameters in gas phase. Properties of the gas flow — the mean kinetic energy and the rate of pulsations decay — make it possible to simulate the stochastic motion of the particles under the assumption of the Poisson flow of events. [Pg.228]

Using a Langevin dynamics approach, the stochastic LLG equation [Eq. (3.46)] can be integrated numerically, in the context of the Stratonovich stochastic calculus, by choosing an appropriate numerical integration scheme [51]. This method was first applied to the dynamics of noninteracting particles [51] and later also to interacting particle systems [13] (see Fig. 3.5). [Pg.214]

The retardation of the protein movement has been discussed qualitatively in terms of a sieving mechanism rather than a frictional resistance37). Ogston et al.39) have theoretically described the diffusion as a stochastic process in which the particles move by unit displacements and in which the decrease in the rate of diffusion in a polymer network depends on the probability that a particle finds a hole in the network into which it can move. The relationship derived from this approach is in close agreement with Eq. (35). [Pg.121]

Numerical results show that the stochastic mean and deterministic result approach each other quite rapidly as the number of particles increases. Figures are shown in Refs. 13 and 67. [Pg.163]

The stochastic motion of particles in condensed matter is the fundamental concept that underlies diffusion. We will therefore discuss its basic ideas in some depth. The classical approach to Brownian motion aims at calculating the number of ways in which a particle arrives at a distinct point m steps from the origin while performing a sequence of z° random steps in total. Consider a linear motion in which the probability of forward and backward hopping is equal (= 1/2). The probability for any sequence is thus (1/2). Point m can be reached by z° + m)/2 forward plus (z° m)/2 backward steps. The number of distinct sequences to arrive at m is therefore... [Pg.103]

Summing this Section up, we would like to note that in the approach discussed here the introduction of stochasticity on a mesoscopic level restricts the applicability of a method by such statements of a problem where subtle details of particle interaction become unimportant. First of all, we mean that kinetic processes with non-equilibrium critical points, when at long reaction time the correlation length exceeds all other spatial dimensions. This limitation makes us consider in the next Section 2.3 the microscopic level of the kinetic description. [Pg.108]

To treat the stochastic Lotka and Lotka-Volterra models, we have now to extend the formalism presented in Section 2.2.2, where collective variables-numbers of particles iVA and Vg were used to describe reactions. The point is that this approach neglects local density fluctuations in small element volumes. To incorporate both these fluctuations and their correlations due to diffusive conjunction, we are in position now to reformulate these models in terms of the diffusion-controlled processes - in contrast to the rather primitive birth-death formalism used in Section 2.2.2. It permits also to demonstrate in the non-trivial way a role of diffusion in the autowave processes. The main results of this Chapter are published in [21, 25]. [Pg.473]

This statement is not self-evident and needs some comments. A role of concentration degrees of freedom in terms of the formally-kinetic description was discussed in Section 2.1.1. Stochastic approach adds here a set of equations for the correlation dynamics where the correlation functions are field-type values. Due to very complicated form of the complete set of these equations, the analytical analysis of the stationary point stability is hardly possible. In its turn, a numerical study of stability was carried out independently for the correlation dynamics with the fixed particle concentrations. [Pg.483]

For the case 5=1 and D = 1 the results of the stochastic model are in good agreement with the CA model y = 0.262). This is understandable because the different definition of the reaction which leads to a difference in the blocking of activated sites cannot play significant role because all sites are activated. The diffusion rate of D = 10 leads nearly to the same reactivity as if we define the reaction between the nearest-neighbour particles. If the diffusion rate is considerably lowered (D = 0.1), the behaviour of the system changes completely because of the decrease of the reaction probability. This leads to the disappearance of the kinetic phase transition at y because different types of particles may reside on the surface as the nearest neighbours without reaction, a case which does not occur at all in the CA approach. [Pg.562]

In our approach [1, 2] termed the dynamic method the complex susceptibility x = x — ix" is determined by a law of undamped motion of a dipole in a given potential well and by dissipation mechanism often described as stosszahlansatz in the underlying kinetic or Boltzmann equation. In this review we shall refer to this (dynamic) method as the ACF method, since it is actually based on calculation of the spectrum of the dipolar autocorrelation function (ACF). Actually we use a one-particle approximation, in which the form of an employed potential well (being in many cases rectangular or close to it) is taken a priori. Correlation of the particles coordinates is characterized implicitly by the Kirkwood correlation factor g, its value being taken from the experimental data. The ACF method is simple and effective, because we do not employ the stochastic equations of motions. This feature distinguishes our method from other well-known approaches—for example, from those described in books [13, 14]. [Pg.72]

Typical Lagrangian approaches include the deterministic trajectory method and the stochastic trajectory method. The deterministic trajectory method neglects all the turbulent transport processes of the particle phase, while the stochastic trajectory method takes into account the effect of gas turbulence on the particle motion by considering the instantaneous gas velocity in the formulation of the equation of motion of particles. To obtain the statistical... [Pg.165]


See other pages where Stochastic particle approach is mentioned: [Pg.368]    [Pg.268]    [Pg.763]    [Pg.231]    [Pg.400]    [Pg.248]    [Pg.255]    [Pg.493]    [Pg.332]    [Pg.347]    [Pg.212]    [Pg.119]    [Pg.214]    [Pg.79]    [Pg.81]    [Pg.418]    [Pg.89]    [Pg.57]    [Pg.227]    [Pg.113]    [Pg.472]    [Pg.527]    [Pg.529]    [Pg.562]    [Pg.618]    [Pg.305]    [Pg.119]    [Pg.234]   
See also in sourсe #XX -- [ Pg.325 ]




SEARCH



Approach stochastic

Stochastic particle

© 2024 chempedia.info