Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stiffness rubber

A number of poly(vinyl ethers) are used in practice. Their typical structure can be described by the formula [-CH2CH(OR)-]n, the more common ones being the polymers with R = methyl, ethyl, propyl, n-butyl, or ferf-butyl. Polymers with longer radical chains such as octadecyl also are known. Poly(vinyl methyl ether) (PVME), CAS 9003-09-2, with lower DP is a viscous liquid, while the polymer with higher DP is a stiff rubber. PVME is used as a rubber plasticizer and in adhesives and paints. Poly(vinyl ethyl... [Pg.313]

The tenn hardness encompasses a range of properties. Four main measures of hardness are widespread resistance to indentation, scratch resistance, damping of a pendulum, and flexibility. Indentation hardness is commonly used to indicate the hardness of rabbers. A soft, flabby, silicone rubber would have a Shore A hardness of 20, and a hard, stiff, rubber a hardness of 70. [Pg.46]

Polypropylene polymers are typically modified with ethylene to obtain desirable properties for specific applications. Specifically, ethylene—propylene mbbers are introduced as a discrete phase in heterophasic copolymers to improve toughness and low temperature impact resistance (see Elastomers, ETHYLENE-PROPYLENE rubber). This is done by sequential polymerisation of homopolymer polypropylene and ethylene—propylene mbber in a multistage reactor process or by the extmsion compounding of ethylene—propylene mbber with a homopolymer. Addition of high density polyethylene, by polymerisation or compounding, is sometimes used to reduce stress whitening. In all cases, a superior balance of properties is obtained when the sise of the discrete mbber phase is approximately one micrometer. Examples of these polymers and their properties are shown in Table 2. Mineral fillers, such as talc or calcium carbonate, can be added to polypropylene to increase stiffness and high temperature properties, as shown in Table 3. [Pg.409]

Resilient but rigid foundations such as by providing spring mounts or rubber pads for machines on the floor or for components and devices mounted on the machine so that they are able to absorb the vibrations, caused by resonance and quasi resonance effects, due to filtered out narrow band ground movements. The stiffness of the foundation (coefficient of the restoring force, k) may be chosen such that it would make the natural frequency of the equipment... [Pg.452]

A comparison of these predicted values of E with the measured values plotted in the bar-chart of Fig. 3.5 shows that, for metals and ceramics, the values of E we calculate are about right the bond-stretching idea explains the stiffness of these solids. We can be happy that we can explain the moduli of these classes of solid. But a paradox remains there exists a whole range of polymers and rubbers which have moduli which are lower - by up to a factor of 100- than the lowest we have calculated. Why is this What determines the moduli of these floppy polymers if it is not the springs between the atoms We shall explain this under our next heading. [Pg.60]

All polymers, if really solid, should have moduli above the lowest level we have calculated - about 2 GN m - since they are held together partly by Van der Waals and partly by covalent bonds. If you take ordinary rubber tubing (a polymer) and cool it down in liquid nitrogen, it becomes stiff - its modulus rises rather suddenly from around lO GNm" to a proper value of 4GNm . But if you warm it up again, its modulus drops back to 10 GNm . ... [Pg.61]

This is because rubber, like many polymers, is composed of long spaghetti-like chains of carbon atoms, all tangled together as we showed in Chapter 5. In the case of rubber, the chains are also lightly cross-linked, as shown in Fig. 5.10. There are covalent bonds along the carbon chain, and where there are occasional cross-links. These are very stiff, but they contribute very little to the overall modulus because when you load the structure it is the flabby Van der Waals bonds between the chains which stretch, and it is these which determine the modulus. [Pg.61]

Well, that is the case at the low temperature, when the rubber has a proper modulus of a few GPa. As the rubber warms up to room temperature, the Van der Waals bonds melt. (In fact, the stiffness of the bond is proportional to its melting point that is why diamond, which has the highest melting point of any material, also has the highest modulus.) The rubber remains solid because of the cross-links which form a sort of skeleton but when you load it, the chains now slide over each other in places where there are no cross-linking bonds. This, of course, gives extra strain, and the modulus goes down (remember, E = [Pg.61]

Many of the most floppy polymers have half-melted in this way at room temperature. The temperature at which this happens is called the glass temperature, Tq, for the polymer. Some polymers, which have no cross-links, melt completely at temperatures above T, becoming viscous liquids. Others, containing cross-links, become leathery (like PVC) or rubbery (as polystyrene butadiene does). Some typical values for Tg are polymethylmethacrylate (PMMA, or perspex), 100°C polystyrene (PS), 90°C polyethylene (low-density form), -20°C natural rubber, -40°C. To summarise, above Tc. the polymer is leathery, rubbery or molten below, it is a true solid with a modulus of at least 2GNm . This behaviour is shown in Fig. 6.2 which also shows how the stiffness of polymers increases as the covalent cross-link density increases, towards the value for diamond (which is simply a polymer with 100% of its bonds cross-linked. Fig. 4.7). Stiff polymers, then, are possible the stiffest now available have moduli comparable with that of aluminium. [Pg.62]

The moduli of metals, ceramics and glassy polymers below Tq reflect the stiffness of the bonds which link the atoms. Glasses and glassy polymers above are leathers, rubbers or viscous liquids, and have much lower moduli. Composites have moduli which are a weighted average of those of their components. [Pg.65]

Whether or not a polymer is rubbery or glass-like depends on the relative values of t and v. If t is much less than v, the orientation time, then in the time available little deformation occurs and the rubber behaves like a solid. This is the case in tests normally carried out with a material such as polystyrene at room temperature where the orientation time has a large value, much greater than the usual time scale of an experiment. On the other hand if t is much greater than there will be time for deformation and the material will be rubbery, as is normally the case with tests carried out on natural rubber at room temperature. It is, however, vital to note the dependence on the time scale of the experiment. Thus a material which shows rubbery behaviour in normal tensile tests could appear to be quite stiff if it were subjected to very high frequency vibrational stresses. [Pg.45]

The polymers available range from those with a stiffness similar to that of polypropylene to that of a rather firm rubber. The harder grades have up to 84% of 4GT segments and a of 214°C whilst the softest grades contain as little as 33% 4GT units and have a of 163°C. [Pg.738]

Whilst the Tg of poly(dimethylsiloxane) rubbers is reported to be as low as -123°C they do become stiff at about -60 to -80°C due to some crystallisation. Copolymerisation of the dimethyl intermediate with a small amount of a dichlorodiphenylsilane or, preferably, phenylmethyldichlorosilane, leads to an irregular structure and hence amorphous polymer which thus remains a rubber down to its Tg. Although this is higher than the Tg of the dimethylsiloxane it is lower than the so that the polymer remains rubbery down to a lower temperature (in some cases down to -100°C). The Tg does, however, increase steadily with the fraction of phenylsiloxane and eventually rises above that of the of the dimethylsilicone rubber. In practice the use of about 10% of phenyldichlorosilane is sufficient to inhibit crystallisation without causing an excess rise in the glass transition temperature. As with the polydimethylsilox-anes, most methylphenyl silicone rubbers also contain a small amount of vinyl groups. [Pg.833]

Rubber or plastic gloves, face shields or goggles, rubber boots or over-shoes, face masks and an all-purpose respirator Household dustpan (rubber or polythene), brush and large bucket (preferably polythene), an ordinary steel shovel, stiff bristle brush and a soft brush, for sweeping up and containing broken glass, and industrial cotton mops, plastic foam mops or squeegees... [Pg.428]

Solutions of the two recipes were blended in varying proportions to provide tie coats of continuously varying composition. The patent shows an example of eight plies or layers of graded composition between the rubber and the metal substrate. Because of the high fraction of reactive filler, the material closest to the metal substrate would be the most rigid and polar. The stiffness and polarity... [Pg.451]

When the temperamre is lowered, rubbers become stiff and brittle. All rubbers eventually stiffen to a rigid, amorphous glass at the glass transition temperature (Tg). This temperature also indicates the low-temperature service limit of the rubber. Tg values are dependent on the structure, degree of cross-linking (vulcanization) and isomeric composition of the rubber. [Pg.580]

The first type of bonded design for this application was the beaded doubler panel (Fig. 28). This design was fairly successful at addressing the problems with simple riveted structure but had two primary drawbacks. The area under the beads remained a single thickness sheet and was still prone to fatigue. Reducing the unbonded areas under the beads was not a solution because it reduced the overall stiffness of the panel. Secondly, tooling for these panels was complex and not very robust. Autoclave pressure applied to the beaded areas of the doubler would cause them to collapse, so thick frames were fabricated with cutouts for the beads to protect them. A rubber layer bonded to the surface of the frames... [Pg.1175]

In general, as the ion content is raised, the modulus or stiffness of the ionomer is increased, as shown by the data in Fig. 2. While the increase is much greater in the elevated temperature range, where the polymer is acting more like a crosslinked rubber, there is still a significant increase in the glassy modulus below Tg. For example, for the PMMA-based ionomer of Fig. 2, the modulus at 30°C is almost 20% above that of the homopolymer for an ionomer having an ion content of 12.4 mol%. For the... [Pg.147]


See other pages where Stiffness rubber is mentioned: [Pg.154]    [Pg.254]    [Pg.233]    [Pg.773]    [Pg.14]    [Pg.355]    [Pg.22]    [Pg.120]    [Pg.576]    [Pg.27]    [Pg.154]    [Pg.254]    [Pg.233]    [Pg.773]    [Pg.14]    [Pg.355]    [Pg.22]    [Pg.120]    [Pg.576]    [Pg.27]    [Pg.492]    [Pg.87]    [Pg.186]    [Pg.271]    [Pg.144]    [Pg.291]    [Pg.306]    [Pg.439]    [Pg.479]    [Pg.878]    [Pg.880]    [Pg.892]    [Pg.308]    [Pg.748]    [Pg.751]    [Pg.30]    [Pg.112]    [Pg.5]    [Pg.9]    [Pg.198]    [Pg.120]    [Pg.411]   
See also in sourсe #XX -- [ Pg.385 ]




SEARCH



Stiff Stiffness

Stiffness

© 2024 chempedia.info