Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stainless steel properties

Uses Adhesive primer for aluminum, grit blasted, degreased steel, nylon, phosphatized steel, and stainless steel Properties Gray dens. 9.5-10.0 Ib/gal vise. 20-200 cps flash pt. (Seta CC)> 200 C 33-37% solids... [Pg.185]

Others. Concentrated boiling water extract has metal cleansing (e.g., stainless steel) properties that could be utilized for producing a biodegradable natural cleansing product. [Pg.385]

It is used in arc-welding rods for stabilized grades of stainless steel. Thousands of pounds of niobium have been used in advanced air frame systems such as were used in the Gemini space program. The element has superconductive properties superconductive magnets have been... [Pg.104]

Ytterbium metal has possible use in improving the grain refinement, strength, and other mechanical properties of stainless steel. One isotope is reported to have been used as a radiation source substitute for a portable X-ray machine where electricity is unavailable. Few other uses have been found. [Pg.197]

Common alloying elements include nickel to improve low temperature mechanical properties chromium, molybdenum, and vanadium to improve elevated-temperature properties and silicon to improve properties at ordinary temperatures. Low alloy steels ate not used where corrosion is a prime factor and are usually considered separately from stainless steels. [Pg.347]

The enhanced strength and corrosion properties of duplex stainless steels depend on maintaining equal amounts of the austenite and ferrite phases. The welding thermal cycle can dismpt this balance therefore, proper weld-parameter and filler metal selection is essential. Precipitation-hardened stainless steels derive their additional strength from alloy precipitates in an austenitic or martensitic stainless steel matrix. To obtain weld properties neat those of the base metal, these steels are heat treated after welding. [Pg.347]

Fluorosulfuric acid can be very corrosive. A study of the corrosive properties of fluorosulfuric acid during preparation and use showed carbon steel to be acceptable up to 40°C, stainless steel up to 80°C, and aluminum alloys up to 130°C (52). [Pg.249]

Ferritic stainless steels depend on chromium for high temperature corrosion resistance. A Cr202 scale may form on an alloy above 600°C when the chromium content is ca 13 wt % (36,37). This scale has excellent protective properties and occurs iu the form of a very thin layer containing up to 2 wt % iron. At chromium contents above 19 wt % the metal loss owiag to oxidation at 950°C is quite small. Such alloys also are quite resistant to attack by water vapor at 600°C (38). Isothermal oxidation resistance for some ferritic stainless steels has been reported after 10,000 h at 815°C (39). Grades 410 and 430, with 11.5—13.5 wt % Cr and 14—18 wt % Cr, respectively, behaved significandy better than type 409 which has a chromium content of 11 wt %. [Pg.118]

Eabrication techniques must take into account the metallurgical properties of the metals to be joined and the possibiUty of undesirable diffusion at the interface during hot forming, heat treating, and welding. Compatible alloys, ie, those that do not form intermetaUic compounds upon alloying, eg, nickel and nickel alloys (qv), copper and copper alloys (qv), and stainless steel alloys clad to steel, may be treated by the traditional techniques developed for clads produced by other processes. On the other hand, incompatible combinations, eg, titanium, zirconium, or aluminum to steel, require special techniques designed to limit the production at the interface of undesirable intermetaUics which would jeopardize bond ductihty. [Pg.148]

P/M processing of titanium aluminides results in more consistent product quaHty than the conventional casting process, and offers novel alloy/microstmcture possibiHties and improved ductiHty. Processing trends include use of high (1200—1350°C) temperature sintering to improve mechanical properties of steel and stainless steel parts. [Pg.179]

The injection mol ding process eliminates the restriction of straight-sided components required when parts are ejected from a die, and offers opportunities for external undercuts and threads. A wide variety of alloys can be processed, including alloy steels and stainless steels. Material properties of injection molded parts are available (32). [Pg.185]

Synthetic Marble. Synthetic marble-like resin products are prepared by casting or molding a highly filled monomer mixture or monomer—polymer symp. When only one smooth surface is required, a continuous casting process using only one endless stainless steel belt can be used (52,53). Typically on the order of 60 wt % inorganic filler is used. The inorganic fillers, such as aluminum hydroxide, calcium carbonate, etc, are selected on the basis of cost, and such properties as the translucence, chemical and water resistance, and ease of subsequent fabrication (54,55). [Pg.265]

Nickel—Iron. A large amount of nickel is used in alloy and stainless steels and in cast irons. Nickel is added to ferritic alloy steels to increase the hardenabihty and to modify ferrite and cementite properties and morphologies, and thus to improve the strength, toughness, and ductihty of the steel. In austenitic stainless steels, the nickel content is 7—35 wt %. Its primary roles are to stabilize the ductile austenite stmcture and to provide, in conjunction with chromium, good corrosion resistance. Nickel is added to cast irons to improve strength and toughness. [Pg.6]

ALkylamines are corrosive to copper, copper-containing alloys (brass), aluminum, 2inc, 2inc alloy, and galvani2ed surfaces. Aqueous solutions of aLkylamines slowly etch glass as a consequence of the basic properties of the amines in water. Carbon or stainless steel vessels and piping have been used satisfactorily for handling aLkylamines and, as noted above, some aLkylamines can act as corrosion inhibitors in boiler appHcations. [Pg.199]

In the Irvine-Park falling needle viscometer (FNV) (194), the moving body is a needle. A small-diameter glass or stainless steel needle falls vertically in a fluid. The viscous properties and density of the fluid are derived from the velocity of the needle. The technique is simple and useflil for measuring low (down to lO " ) shear viscosities. The FNV-100 is a manual instmment designed for the measurement of transparent Newtonian and non-Newtonian... [Pg.190]

Latex compound viscosity obviously forms an important aspect of dipped product manufacture. Accurate measurement by a Brookfield or similar viscometer is desirable to estabhsh the fundamental viscosity of a compound, but Flow-Cup viscometers (Ford B.3 Cup) are more commonly used for day-to-day control of latex compounds during compounding and product manufacture. It is necessary to ensure that only stainless steel flow cups are used, if the measured latex is allowed to return to the production tanks brass cups yield an unacceptable level of copper contamination, which adversely affects aging properties of products made from copper-contaminated mbber compound. [Pg.261]

High purity 50% ferrosihcon containing <0.1% Al and C is used for production of stainless steel and corded wire for tires, where residual aluminum can cause harm fill alumina-type inclusions. These are also useflil in continuous cast heats, where control of aluminum is necessary. High purity grades of 50 and 75% ferrosihcon containing low levels of aluminum, calcium, and titanium are used for sihcon additions to grain-oriented electrical steels, where low residual aluminum content contributes to the attainment of desired electrical properties, eg, significant reduction of eddy currents. [Pg.540]

The uses of steel are too diverse to be Hsted completely or to serve as a basis of classification. Inasmuch as grades of steel are produced by more than one process, classification by method of manufacture is not advantageous. The most useful classification is by chemical composition into the large groups of carbon steels, alloy steels, and stainless steels. Within these groups are many subdivisions based on chemical composition, physical or mechanical properties, or uses. [Pg.373]

Properties and Selection Stainless Steels, Tool Materials and Special-Pufpose Metals, Yol. 3 of Metals Handbook, 9th ed., American Society for Metals, Metals Park, Ohio, 1979, pp. 421-488. [Pg.222]

Zirconium is a hard, shiny, ductile metal, similar to stainless steel in appearance. It can be hot-worked to form slabs, rods, and rounds from arc-melted ingot. Further cold-working of zirconium with intermediate annealings produces sheet, foil, bar wire, and tubing. Physical properties are given in Table 3. [Pg.427]


See other pages where Stainless steel properties is mentioned: [Pg.392]    [Pg.215]    [Pg.238]    [Pg.500]    [Pg.236]    [Pg.348]    [Pg.167]    [Pg.375]    [Pg.439]    [Pg.461]    [Pg.137]    [Pg.38]    [Pg.57]    [Pg.74]    [Pg.432]    [Pg.343]    [Pg.372]    [Pg.97]    [Pg.336]    [Pg.336]    [Pg.370]    [Pg.396]    [Pg.399]    [Pg.399]    [Pg.400]    [Pg.64]    [Pg.84]    [Pg.102]    [Pg.72]    [Pg.293]   
See also in sourсe #XX -- [ Pg.157 , Pg.160 ]

See also in sourсe #XX -- [ Pg.157 ]




SEARCH



© 2024 chempedia.info