Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stainless steels mechanical properties

Ytterbium metal has possible use in improving the grain refinement, strength, and other mechanical properties of stainless steel. One isotope is reported to have been used as a radiation source substitute for a portable X-ray machine where electricity is unavailable. Few other uses have been found. [Pg.197]

Common alloying elements include nickel to improve low temperature mechanical properties chromium, molybdenum, and vanadium to improve elevated-temperature properties and silicon to improve properties at ordinary temperatures. Low alloy steels ate not used where corrosion is a prime factor and are usually considered separately from stainless steels. [Pg.347]

P/M processing of titanium aluminides results in more consistent product quaHty than the conventional casting process, and offers novel alloy/microstmcture possibiHties and improved ductiHty. Processing trends include use of high (1200—1350°C) temperature sintering to improve mechanical properties of steel and stainless steel parts. [Pg.179]

The uses of steel are too diverse to be Hsted completely or to serve as a basis of classification. Inasmuch as grades of steel are produced by more than one process, classification by method of manufacture is not advantageous. The most useful classification is by chemical composition into the large groups of carbon steels, alloy steels, and stainless steels. Within these groups are many subdivisions based on chemical composition, physical or mechanical properties, or uses. [Pg.373]

Structural Properties at Low Temperatures It is most convenient to classify metals by their lattice symmetiy for low temperature mechanical properties considerations. The face-centered-cubic (fee) metals and their alloys are most often used in the construc tion of cryogenic equipment. Al, Cu Ni, their alloys, and the austenitic stainless steels of the 18-8 type are fee and do not exhibit an impact duc tile-to-brittle transition at low temperatures. As a general nile, the mechanical properties of these metals with the exception of 2024-T4 aluminum, improve as the temperature is reduced. Since annealing of these metals and alloys can affect both the ultimate and yield strengths, care must be exercised under these conditions. [Pg.1127]

Nonmagnetic drill collars are manufactured from various alloys, although the most common are Monel K500 (approximately 68% nickel, 28% copper with some iron and manganese, and 316L austenitic stainless steel). A stainless steel with the composition of 0.06% carbon, 0.50% silicon, 17-19% manganese, less than 3.50% nickel, 12% chromium, and 1.15% molybdenum, with mechanical properties of 110 to 115 Ksi tensile strength is also used. [Pg.1258]

Selective removal of the less noble constituent has been demonstrated by chemical analysis in the case of nickel-rich alloys in fused caustic soda or fused fluorides ", and by etching effects and X-ray microanalysis for Fe-18Cr-8Ni steels in fused alkali chlorides. This type of excessive damage can occur with quite small total amounts of corrosion, and in this sense its effect on the mechanical properties of the alloy is comparable with the notorious effect of intercrystalline disintegration in the stainless steels. [Pg.440]

The basic corrosion behaviour of stainless steels is dependent upon the type and quantity of alloying. Chromium is the universally present element but nickel, molybdenum, copper, nitrogen, vanadium, tungsten, titanium and niobium are also used for a variety of reasons. However, all elements can affect metallurgy, and thus mechanical and physical properties, so sometimes desirable corrosion resisting aspects may involve acceptance of less than ideal mechanical properties and vice versa. [Pg.519]

In addition to nickel alloys, nickel also forms an important alloying element in stainless steels and in cast irons, in both of which it confers additional corrosion resistance and improved mechanical and engineering properties, and in Fe-Ni alloys for obtaining controlled physical and magnetic properties (see Chapter 3). With non-ferrous metals nickel also forms important types of alloys, especially with copper, i.e. cupro-nickels and nickel silvers these are dealt with in Section 4.2. [Pg.760]

Niobium is always found in nature associated with tantalum and it closely resembles tantalum in its chemical and mechanical properties. It is a soft ductile metal which, like tantalum, work hardens more slowly than most metals. It will in fact absorb over 90% cold work before annealing becomes necessary, and it is easily formed at room temperature. In addition, welds of high quality can be produced in the metal. In appearance the metal is somewhat similar to stainless steel it has a density slightly higher than stainless steel and a thermal conductivity similar to 1% carbon steel. [Pg.852]

Fig. 8.23 Effect of tempering on the mechanical properties and corrosion resistance of type 420 stainless steel (after Sedriks )... Fig. 8.23 Effect of tempering on the mechanical properties and corrosion resistance of type 420 stainless steel (after Sedriks )...
The local dissolution rate, passivation rate, film thickness and mechanical properties of the oxide are obviously important factors when crack initiation is generated by localised plastic deformation. Film-induced cleavage may or may not be an important contributor to the growth of the crack but the nature of the passive film is certain to be of some importance. The increased corrosion resistance of the passive films formed on ferritic stainless steels caused by increasing the chromium content in the alloy arises because there is an increased enhancement of chromium in the film and the... [Pg.1205]

Platinum-clad stainless steel laboratory ware is available for the evaporation of solutions of corrosive chemicals. These vessels have all the corrosion-resistance properties of platinum up to about 550 °C. The main features are (1) much lower cost than similar apparatus of platinum (2) the overall thickness is about four times that of similar all-platinum apparatus, thus leading to greater mechanical strength and (3) less susceptible to damage by handling with tongs, etc. [Pg.96]

Attempts have been made to improve the mechanical properties of these cements by adding reinforcing fillers (Lawrence Smith, 1973 Brown Combe, 1973 Barton et al, 1975). Lawrence Smith (1973) examined alumina, stainless steel fibre, zinc silicate and zinc phosphate. The most effective filler was found to be alumina powder. When added to zinc oxide powder in a 3 2 ratio, compressive strength was increased by 80 % and tensile strength by 100 % (cements were mixed at a powder/liquid ratio of 2 1). Because of the dilution of the zinc oxide, setting time (at 37 °C) was increased by about 100%. As far as is known, this invention has not been exploited commercially. [Pg.113]

Nickel has good mechanical properties and is easily worked. The pure metal (>99 per cent) is not generally used for chemical plant, its alloys being preferred for most applications. The main use is for equipment handling caustic alkalies at temperatures above that at which carbon steel could be used above 70°C. Nickel is not subject to corrosion cracking like stainless steel. [Pg.298]

Monel, the classic nickel-copper alloy with the metals in the ratio 2 1, is probably, after the stainless steels, the most commonly used alloy for chemical plant. It is easily worked and has good mechanical properties up to 500°C. It is more expensive than stainless steel but is not susceptible to stress-corrosion cracking in chloride solutions. Monel has good resistance to dilute mineral acids and can be used in reducing conditions, where the stainless steels would be unsuitable. It may be used for equipment handling, alkalies, organic acids and salts, and sea water. [Pg.299]

As regards the heat conduction through the solid parts of a cryostat, in the choice of the structural materials a compromise is sought for a low thermal conductivity and suitable mechanical properties. When possible, disordered materials are used in the case of metals, low-conductivity alloys are used as Cu-Ni or stainless steel, in the form of thin-walled tubes. In the evaluation of the heat conduction, the most useful data are the thermal conductivity integrals shown in Fig. 5.2 for some structural materials. The thermal conductivity integral between two temperatures TL and rH is defined as ... [Pg.123]


See other pages where Stainless steels mechanical properties is mentioned: [Pg.121]    [Pg.74]    [Pg.370]    [Pg.72]    [Pg.121]    [Pg.237]    [Pg.225]    [Pg.96]    [Pg.904]    [Pg.905]    [Pg.908]    [Pg.138]    [Pg.145]    [Pg.146]    [Pg.469]    [Pg.529]    [Pg.1016]    [Pg.1196]    [Pg.1197]    [Pg.1199]    [Pg.1203]    [Pg.1210]    [Pg.1314]    [Pg.1292]    [Pg.47]    [Pg.791]    [Pg.295]    [Pg.303]    [Pg.310]    [Pg.485]    [Pg.419]    [Pg.242]   
See also in sourсe #XX -- [ Pg.244 , Pg.245 ]

See also in sourсe #XX -- [ Pg.158 , Pg.159 ]

See also in sourсe #XX -- [ Pg.158 , Pg.159 ]




SEARCH



Mechanical stainless steels

© 2024 chempedia.info