Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stabilization mechanisms dispersions

Paine et al. [99] tried different stabilizers [i.e., hydroxy propylcellulose, poly(N-vinylpyrollidone), and poly(acrylic acid)] in the dispersion polymerization of styrene initiated with AIBN in the ethanol medium. The direct observation of the stained thin sections of the particles by transmission electron microscopy showed the existence of stabilizer layer in 10-20 nm thickness on the surface of the polystyrene particles. When the polystyrene latexes were dissolved in dioxane and precipitated with methanol, new latex particles with a similar surface stabilizer morphology were obtained. These results supported the grafting mechanism of stabilization during dispersion polymerization of styrene in polar solvents. [Pg.205]

The dimensional stability of low density, water blown rigid PU foams for pour-in-place thermal insulation applications was improved by the use of a phthalic anhydride based polyester polyol containing a dispersed cell opening agent. The foam systems obtained allowed some of the carbon dioxide to be released through the cell windows immediately after filling of the cavity, and to be rapidly replaced by air. Studies were made of the flowability, density, open cell content, dimensional stability, mechanical properties, thermal conductivity and adhesion (particularly to flame treated PE) of these foams. These properties were examined in comparison with those of HCFC-141b blown foams. 21 refs. [Pg.82]

Emulsifier is not a necessary component for emulsion polymerization if ihe following conditions are satisfied The particles are formed by homogeneous nucleation mechanism, and the particles are stabilized by factor(s) olher than emulsifier. As to the latter, the sulfate end group that is the residue of persulfate initiator serves for stabilization of dispersion via interparticle electrorepulsive force (20). When the stabilization mechanism works well, a small number of particles grow during polymerization without aggregation, keeping the size distribution narrow. Finally stable, monodisperse, anionic particles are obtained. [Pg.603]

Izmailova, V.N., Yampolskaya, G.P., Tulovskaya, Z.D. (1999). Development of Reh-binder s concept on structure-mechanical barrier in stability of dispersions stabilized with proteins. Colloids and Surfaces A Physicochemical and Engineering Aspects, 160, 89-106. [Pg.349]

Once the dirty spot is removed from the substrate being laundered, it is important that it not be redeposited. Solubilization of the detached material in micelles of surfactant has been proposed as one mechanism that contributes to preventing the redeposition of foreign matter. Any process that promotes the stability of the detached dirt particles in the dispersed form will also facilitate this. We see in Chapter 11 how electrostatic effects promote colloidal stability. The adsorption of ions —especially amphipathic surfactant ions —onto the detached matter assists in blocking redeposition by stabilizing the dispersed particles. Materials such as carbox-ymethylcellulose are often added to washing preparations since these molecules also adsorb on the detached dirt particles and interfere with their redeposition. [Pg.340]

One of the first theoretical attempts to understand steric stabilization of dispersions was based on an entropic mechanism that resembles the elastic contribution to AGR. We consider this mechanism in Example 13.3. [Pg.619]

The work was planned on the basis of a model of a dispersed solid particle onto which one type of sequences of a BG copolymer is adsorbed selectively while the other type sequence is dissolved in the dispersion medium. A sketch of this model is shown in Figure 1. The model is the result of applying the same arguments which had been advanced (12) in discussing the mechanism of stabilization of polymeric oil-in-oil emulsions by BG copolymers to the problem of stabilization of dispersions of solid particles in organic media. Previously, essentially the same arguments had led to the demonstration of micelle formation of styrene-butadiene block copolymers in organic media under certain conditions (15). [Pg.391]

Unlike micelles, an emulsion is a liquid system in which one liquid is dispersed in a second, immiscible liquid, usually in droplets, with emulsiLers added to stabilize the dispersed system. Conventional emulsions possess droplet diameters of more than 200 nm, and are therefore optically opaque or milky. Conventional emulsions are thermodynamically unstable, tending to reduce their total free energy by reducing the total area of the two-phase interface. In contrast, microemulsions with droplet diameters less than 100 nm are optically clear and thermodynamically stable. Unlike conventional emulsions that require the input of a substantial amount of energy, microemulsions are easy to prepare and form spontaneously on mixing, with little or no mechanical energy applied (Lawrence and Rees, 2000). [Pg.121]

Solubilization of insoluble oxidation products and soot particles. Reverse micelles (RMs) formations manage the prevention of agglomeration and the contamination process of insoluble oxidation particles and soot particles by both steric stabilization (Fig.2.1) and electrostatic stabilization mechanisms (Fig.2.2). The steric stabilization mechanism provides a physical barrier to agglomeration of particles by adsorption on particle surfaces. Adsorbed dispersant acts as a physical barrier to attraction between particles. [Pg.15]

Historically, ideas of casein micelle structure and stability have evolved in tandem. In the earlier literature, discussions of micellar stability drew on the classical ideas of the stability of hydrophobic colloids. More recently, the hairy micelle model has focused attention more on the hydrophilic nature of the micelle and steric stabilization mechanisms. According to the hairy micelle model, the C-terminal macropeptides of some of the K-casein project from the surface of the micelle to form a hydrophilic and negatively charged diffuse outer layer, which causes the micelles to repel one another on close approach. Aggregation of micelles can only occur when the hairs are removed enzymatically, e.g., by chymosin (EC 3.4.23.4) in the renneting of milk, or when the micelle structure is so disrupted that the hairy layer is destroyed, e.g., by heating or acidification, or when the dispersion medium becomes a poor solvent for the hairs, e.g., by addition of ethanol. [Pg.65]

The term steric stabilization has been used by colloid scientists to describe how a lyophilic substance, located on the surface of a lyo-phobic colloid, can prevent aggregation of the dispersion. The phenomenology of steric stabilization has been recognized and put to use over many millenia one notable example is the use, by the ancient Egyptians, of casein as a steric stabilizer of carbon (lamp black) in the production of inks for writing on papyrus. Only in the last 50 years or so has a scientific understanding of steric stabilization mechanisms emerged. [Pg.135]

K-absorption spectrum of yttrium in YH3, which was mechanically treated in a ball planetary mill during 20 min. with angular rate of 1630 rot./min. is shown in Fig. 6 (c). This absorption spectrum, as seen from the picture, is shifted relatively to the spectrum of untreated YH3 hydride to the side of lower energies, which in accordance with the found out correlation has to testify to thermal stability of reduction of treated yttrium hydride. Actually, we determined by the method of hydrogen thermal desorption, that as a result of mechanic dispersing of this hydride its temperature of decomposition decreased more than on 300 °C (Fig. 7), i.e. the... [Pg.424]

At the beginning, the electric double layer at the solid-aqueous electrolyte solution interface was characterized by the measurements of the electrokinetic potential and stability of dispersed systems. Later, the investigations were supported by potentiometric titration of the suspension, adsorption and calorimetric measurements [2]. Now, much valuable information on the mechanism of the ion adsorption can be obtained by advanced spectroscopic methods (especially infrared ATR and diffuse spectroscopy) [3], Mosbauer spectroscopy [4] and X-ray spectroscopy [5]. Some data concerning the interface potential were obtained with MOSFET [6], and AFM [7]. An enthalpy of the reaction of the metal oxide-solution systems can be obtained by... [Pg.136]

Ions can selectively occupy part of an interface and so cause an electrical charge. This can stabilize a dispersion as we have seen in milk. The mechanism of stabilization is more complicated than simple electrostatic repulsion we discuss this further on. [Pg.264]

For inks which contain pigments, the most common problem is aggregation of the pigment particles due to the inherent instability of most dispersion systems. Since most modern inkjet inks for graphic applications contain dispersed pigments, the stabilization mechanisms of dispersions will be briefly discussed below. [Pg.23]


See other pages where Stabilization mechanisms dispersions is mentioned: [Pg.320]    [Pg.1441]    [Pg.1443]    [Pg.277]    [Pg.442]    [Pg.315]    [Pg.363]    [Pg.259]    [Pg.119]    [Pg.318]    [Pg.64]    [Pg.120]    [Pg.7]    [Pg.540]    [Pg.367]    [Pg.610]    [Pg.320]    [Pg.21]    [Pg.390]    [Pg.5]    [Pg.366]    [Pg.215]    [Pg.126]    [Pg.128]    [Pg.135]    [Pg.146]    [Pg.172]    [Pg.135]    [Pg.15]    [Pg.123]    [Pg.430]    [Pg.215]    [Pg.254]    [Pg.340]    [Pg.24]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Dispersed stability

Dispersibility stabilization)

Dispersion mechanisms

Dispersion stability

Dispersions stabilization

Dispersities mechanisms

Mechanical dispersion

Mechanical stability

Mechanical stabilization

Mechanically dispersion

Stability mechanism

Stabilizer mechanism

Stabilizing mechanisms

© 2024 chempedia.info