Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stability solid electrolytes

Another application is in tire oxidation of vapour mixtures in a chemical vapour transport reaction, the attempt being to coat materials with a tlrin layer of solid electrolyte. For example, a gas phase mixture consisting of the iodides of zirconium and yttrium is oxidized to form a thin layer of ytnia-stabilized zirconia on the surface of an electrode such as one of the lanthanum-snontium doped transition metal perovskites Lai j.Srj.M03 7, which can transmit oxygen as ions and electrons from an isolated volume of oxygen gas. [Pg.242]

Generally, solid electrolytes for battery applications require high ionic conductivities and wide ranges of appropriate thermodynamic stability. [Pg.533]

The third aspect, the stability range of solid electrolytes, is of special concern for alkaline-ion conductors since only a few compounds show thermodynamic stability with, e.g., elemental lithium. Designing solid electrolytes by considering thermodynamic stability did lead to very interesting compounds and the discovery of promising new solid electrolytes such as the lithium nitride halides [27]. However, since solid-state reactions may proceed very slowly at low temperature, metasta-... [Pg.538]

Traditionally, the chemical stability of the electrode/electrolyte interface and its electronic properties have not been given as much consideration as structural aspects of solid electrolytes, in spite of the fact that the proper operation of a battery often depends more on the interface than on the solid electrolyte. Because of the high ionic conductivity in the electrolyte and the high electronic conductivity in the electrode, the voltage falls completely within a very narrow region at the electrolyte/electrode interface. [Pg.538]

Thin-film solid electrolytes in the range of lpm have the advantage that the material which is inactive for energy storage is minimized and the resistance of the solid electrolyte film is drastically decreased for geometrical reasons. This allows the application of a large variety of solid electrolytes which exhibit quite poor ionic conductivity but high thermodynamic stability. The most important thin-film preparation methods for solid electrolytes are briefly summarized below. [Pg.543]

Today, the term solid electrolyte or fast ionic conductor or, sometimes, superionic conductor is used to describe solid materials whose conductivity is wholly due to ionic displacement. Mixed conductors exhibit both ionic and electronic conductivity. Solid electrolytes range from hard, refractory materials, such as 8 mol% Y2C>3-stabilized Zr02(YSZ) or sodium fT-AbCb (NaAluOn), to soft proton-exchange polymeric membranes such as Du Pont s Nafion and include compounds that are stoichiometric (Agl), non-stoichiometric (sodium J3"-A12C>3) or doped (YSZ). The preparation, properties, and some applications of solid electrolytes have been discussed in a number of books2 5 and reviews.6,7 The main commercial application of solid electrolytes is in gas sensors.8,9 Another emerging application is in solid oxide fuel cells.4,5,1, n... [Pg.91]

We start by considering a schematic representation of a porous metal film deposited on a solid electrolyte, e.g., on Y203-stabilized-Zr02 (Fig. 5.17). The catalyst surface is divided in two distinct parts One part, with a surface area AE is in contact with the electrolyte. The other with a surface area Aq is not in contact with the electrolyte. It constitutes the gas-exposed, i.e., catalytically active film surface area. Catalytic reactions take place on this surface only. In the subsequent discussion we will use the subscripts E (for electrolyte) and G (for gas), respectively, to denote these two distinct parts of the catalyst film surface. Regions E and G are separated by the three-phase-boundaries (tpb) where electrocatalytic reactions take place. Since, as previously discussed, electrocatalytic reactions can also take place to, usually,a minor extent on region E, one may consider the tpb to be part of region E as well. It will become apparent below that the essence of NEMCA is the following One uses electrochemistry (i.e. a slow electrocatalytic reaction) to alter the electronic properties of the metal-solid electrolyte interface E. [Pg.206]

Figure 5.20. Left Schematic of an O2 conducting solid electrolyte cell with fixed P02 and PO2 values at the porous working (W) and reference (R ) electrodes without (top) and with (bottom) ion backspillover on the gas exposed electrodes surfaces, showing also the range of spatial constancy of the electrochemical potential, PQ2-, of O2. Right Corresponding spatial variation in the electrochemical potential of electrons, ]Ie(= Ef) UWR is fixed in both cases to the value (RT/4F)ln( P02 /pc>2 ) also shown in the relative position of the valence band, Ev, and of the bottom of the conduction band, Ec, in the solid electrolyte (SE) numerical values correspond to 8 mol% Y203-stabilized-Zr02, pc>2=10 6 bar, po2=l bar and T=673 K.32 Reproduced by permission of The Electrochemical Society. Figure 5.20. Left Schematic of an O2 conducting solid electrolyte cell with fixed P02 and PO2 values at the porous working (W) and reference (R ) electrodes without (top) and with (bottom) ion backspillover on the gas exposed electrodes surfaces, showing also the range of spatial constancy of the electrochemical potential, PQ2-, of O2. Right Corresponding spatial variation in the electrochemical potential of electrons, ]Ie(= Ef) UWR is fixed in both cases to the value (RT/4F)ln( P02 /pc>2 ) also shown in the relative position of the valence band, Ev, and of the bottom of the conduction band, Ec, in the solid electrolyte (SE) numerical values correspond to 8 mol% Y203-stabilized-Zr02, pc>2=10 6 bar, po2=l bar and T=673 K.32 Reproduced by permission of The Electrochemical Society.
It is known32 reported that the solid electrolyte itself, i.e. Y203-doped-Zr02, is a reasonably selective catalyst for CH4 conversion to C2 hydrocarbons, i.e., ethane and ethylene32 and this should be taken into account in studies employing stabilized Zr02 cells. At the same time it was found54 that the use of Ag catalyst films leads to C2 selectivities above 0.6 for low methane conversions. [Pg.402]

The stability of ceramic materials at high temperatures has made them useful as furnace liners and has led to interest in ceramic automobile engines, which could endure overheating. Currently, a typical automobile contains about 35 kg of ceramic materials such as spark plugs, pressure and vibration sensors, brake linings, catalytic converters, and thermal and electrical insulation. Some fuel cells make use of a porous solid electrolyte such as zirconia, Zr02, that contains a small amount of calcium oxide. It is an electronic insulator, and so electrons do not flow through it, but oxide ions do. [Pg.737]

The stabilized zirconia family of oxides, especially calcia-stabilized zirconia, are solids in which oxide ion conductivity has been increased to the extent that they are widely used solid electrolytes (Section 1.11.6, Section 4.4.5, and Section 6.8). [Pg.278]

A conductivity cell is set up using an yttria-stabilized zirconia electrolyte. At 900°C the equilibrium pressure in the cell was 1.02 x 10-10 atm, and the reference pressure outside the cell was 7.94 x 10 18 atm. (a) What is the cell voltage The temperature was dropped to 800°C and the reference pressure changed to 1.61 x 10-19 atm. The measured equilibrium voltage was 946 mV. (b) What is the equilibrium oxygen pressure in the cell [Data adapted from D-K. Lee et al., J. Solid State Chem., 178, 185-193 (2005).]... [Pg.293]

Liu J and Barnett SA. Thin yttrium-stabilized zirconia electrolyte solid oxide fuel cells by centrifugal casting. J Am Ceram Soc 2002 85 3096-3098. [Pg.123]

Nguyen TL, Kobayashi K, Honda T, Iimura Y, Kato K, Neghisi, A et al. Preparation and evaluation of doped ceria interlayer on supported stabilized zirconia electrolyte SOFCs by wet ceramic processes. Solid State Ionics 2004 174 163-174. [Pg.279]

Ishihara T, Sato K, and Takita Y. Electrophoretic deposition of Y203-stabilized Zr02 electrolyte films in solid oxide fuel cells. J. Am. Ceram. Soc. 1996 79 913-919. [Pg.280]


See other pages where Stability solid electrolytes is mentioned: [Pg.1389]    [Pg.1389]    [Pg.525]    [Pg.540]    [Pg.579]    [Pg.581]    [Pg.607]    [Pg.617]    [Pg.617]    [Pg.97]    [Pg.115]    [Pg.336]    [Pg.338]    [Pg.340]    [Pg.355]    [Pg.182]    [Pg.212]    [Pg.322]    [Pg.425]    [Pg.437]    [Pg.250]    [Pg.748]    [Pg.240]    [Pg.513]    [Pg.224]    [Pg.303]    [Pg.182]    [Pg.289]    [Pg.293]    [Pg.328]    [Pg.5]    [Pg.59]    [Pg.85]    [Pg.300]    [Pg.487]   
See also in sourсe #XX -- [ Pg.537 ]




SEARCH



Electrolyte stability

Solid stability

© 2024 chempedia.info