Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spherical completeness

Atoms have complete spherical synnnetry, and the angidar momentum states can be considered as different synnnetry classes of that spherical symmetry. The nuclear framework of a molecule has a much lower synnnetry. Synnnetry operations for the molecule are transfonnations such as rotations about an axis, reflection in a plane, or inversion tlnough a point at the centre of the molecule, which leave the molecule in an equivalent configuration. Every molecule has one such operation, the identity operation, which just leaves the molecule alone. Many molecules have one or more additional operations. The set of operations for a molecule fonn a mathematical group, and the methods of group theory provide a way to classify electronic and vibrational states according to whatever symmetry does exist. That classification leads to selection rules for transitions between those states. A complete discussion of the methods is beyond the scope of this chapter, but we will consider a few illustrative examples. Additional details will also be found in section A 1.4 on molecular symmetry. [Pg.1134]

IlyperChem avoids th e discon tin nily an d, in isotropy problem of th e implied cutoff by iin posing a sin oothed spherical cn toff within the implied cutoff. When a system is placed in a periodic box, a switched cnLoITis aiitoinatically added. The default outer radius, where the interaction is completely turned off, is the smallest of 1/2 R., 1/2 R.. and 1/2 R, so that the cutoff avoids discontinuities and is isotropic, fh is cutoff may be turned off or modified in the. Molecular Mechanics Options dialog box after solvation and before calcii lation. ... [Pg.202]

Let us compare computations of the effectiveness factor, using each of the three approximations we have described, with exact values from the complete dusty gas model. The calculations are performed for a first order reaction of the form A lOB in a spherical pellet. The stoichiometric coefficient 10 for the product is unrealistically large, but is chosen to emphasize any differences between the different approaches. [Pg.137]

An interesting example of a large specific surface which is wholly external in nature is provided by a dispersed aerosol composed of fine particles free of cracks and fissures. As soon as the aerosol settles out, of course, its particles come into contact with one another and form aggregates but if the particles are spherical, more particularly if the material is hard, the particle-to-particle contacts will be very small in area the interparticulate junctions will then be so weak that many of them will become broken apart during mechanical handling, or be prized open by the film of adsorbate during an adsorption experiment. In favourable cases the flocculated specimen may have so open a structure that it behaves, as far as its adsorptive properties are concerned, as a completely non-porous material. Solids of this kind are of importance because of their relevance to standard adsorption isotherms (cf. Section 2.12) which play a fundamental role in procedures for the evaluation of specific surface area and pore size distribution by adsorption methods. [Pg.24]

To obtain a reliable value of from the isotherm it is necessary that the monolayer shall be virtually complete before the build-up of higher layers commences this requirement is met if the BET parameter c is not too low, and will be reflected in a sharp knee of the isotherm and a well defined Point B. For conversion of into A, the ideal adsorptive would be one which is composed of spherically symmetrical molecules and always forms a non-localized film, and therefore gives the same value of on all adsorbents. Non-localization demands a low value of c as c increases the adsorbate molecules move more and more closely into registry with the lattice of the adsorbent, so that becomes increasingly dependent on the lattice dimensions of the adsorbent, and decreasingly dependent on the molecular size of the adsorbate. [Pg.103]

When water is injected into a water-wet reservoir, oil is displaced ahead of the injected fluid. Injection water preferentially invades the small- and medium-sized flow channels or pores. As the water front passes, unrecovered oil is left in the form of spherical, uncoimected droplets in the center of pores or globules of oil extending through intercoimected rock pores. In both cases, the oil is completely surrounded by water and is immobile. There is htde oil production after injection water breakthrough at the production well (5). [Pg.188]

Most theories of droplet combustion assume a spherical, symmetrical droplet surrounded by a spherical flame, for which the radii of the droplet and the flame are denoted by and respectively. The flame is supported by the fuel diffusing from the droplet surface and the oxidant from the outside. The heat produced in the combustion zone ensures evaporation of the droplet and consequently the fuel supply. Other assumptions that further restrict the model include (/) the rate of chemical reaction is much higher than the rate of diffusion and hence the reaction is completed in a flame front of infinitesimal thickness (2) the droplet is made up of pure Hquid fuel (J) the composition of the ambient atmosphere far away from the droplet is constant and does not depend on the combustion process (4) combustion occurs under steady-state conditions (5) the surface temperature of the droplet is close or equal to the boiling point of the Hquid and (6) the effects of radiation, thermodiffusion, and radial pressure changes are negligible. [Pg.520]

Fragments Generated by Complete Shattering of Spherical Vessel Pressurized by an Inert ideal Gas... [Pg.2281]

Figure 3 Characteristic solid state NMR line shapes, dominated by the chemical shift anisotropy. The spatial distribution of the chemical shift is assumed to be spherically symmetric (a), axially symmetric (b), and completely asymmetric (c). The top trace shows theoretical line shapes, while the bottom trace shows rear spectra influenced by broadening effects due to dipole-dipole couplings. Figure 3 Characteristic solid state NMR line shapes, dominated by the chemical shift anisotropy. The spatial distribution of the chemical shift is assumed to be spherically symmetric (a), axially symmetric (b), and completely asymmetric (c). The top trace shows theoretical line shapes, while the bottom trace shows rear spectra influenced by broadening effects due to dipole-dipole couplings.
CP-1 was assembled in an approximately spherical shape with the purest graphite in the center. About 6 tons of luanium metal fuel was used, in addition to approximately 40.5 tons of uranium oxide fuel. The lowest point of the reactor rested on the floor and the periphery was supported on a wooden structure. The whole pile was surrounded by a tent of mbberized balloon fabric so that neutron absorbing air could be evacuated. About 75 layers of 10.48-cm (4.125-in.) graphite bricks would have been required to complete the 790-cm diameter sphere. However, criticality was achieved at layer 56 without the need to evacuate the air, and assembly was discontinued at layer 57. The core then had an ellipsoidal cross section, with a polar radius of 209 cm and an equatorial radius of309 cm [20]. CP-1 was operated at low power (0.5 W) for several days. Fortuitously, it was found that the nuclear chain reaction could be controlled with cadmium strips which were inserted into the reactor to absorb neutrons and hence reduce the value of k to considerably less than 1. The pile was then disassembled and rebuilt at what is now the site of Argonne National Laboratory, U.S.A, with a concrete biological shield. Designated CP-2, the pile eventually reached a power level of 100 kW [22]. [Pg.437]

An operator had to drain water from a 1,200-m spherical storage vessel nearly full of propane (Figure 8-1). He opened valves A and B. When traces of oil showed that the draining was nearly complete, he shut A and then cracked it to complete the draining. No flow came. He opened A fully. The choke—presumably hydrate, a compound of water and a light hydrocarbon with a melting point above 0°C—cleared suddenly, and the operator and two other men were splashed with liquid. The handle came off valve A, and they could not get it back on. Valve B was frozen and could not be moved. Access was poor because the drain valves were immediately below the tank, which was only 1.4 m above the ground. [Pg.166]

The flux-corrected-transport technique was also used by Phillips (1980), who successfully simulated the process of propagation of a detonation wave by a very simple mechanism. The reactive mixture was modeled to release its complete heat of combustion instantaneously after some prescribed temperature was attained by compression. A spherical detonation wave, simulated in this way, showed a correct propagation velocity and Taylor wave shape. [Pg.108]

Fay and Lewis (1977) used spherical gas samples inside soap bubbles whose volumes ranged from 20 to 190 cm. Typically, a sphere was ignited with resistance wire, and the combustion process was then filmed with a high-speed camera. The fireball s maximum height and diameter, as well as the time needed to complete combustion, were evaluated. The fireball s thermal radiation was sensed by a radiation detector. Figure 6.3 relates fireball burning time and size to initial propane... [Pg.161]

The above procedure produces blast parameters applicable to a completely symmetrical blast wave, such as would result from the explosion of a hemispherical vessel placed directly on the ground. In practice, vessels are either spherical or cylindrical, and placed at some height above the ground. This influences blast parameters. To adjust for these geometry effects, and 7 are multiplied by some adjustment factors derived from experiments with high-explosive charges of various shapes. [Pg.209]

Fireball A burning fuel-air cloud whose energy is emitted primarily in the form of radiant heat. The inner core of the cloud consists almost completely of fuel, whereas the outer layer (where ignition first occurs) consists of a flammable fuel-air mixture. As the buoyancy forces of hot gases increase, the burning cloud tends to rise, expand, and assume a spherical shape. [Pg.398]

The resolution required in any analytical SEC procedure, e.g., to detect sample impurities, is primarily based on the nature of the sample components with respect to their shape, the relative size differences of species contained in the sample, and the minimal size difference to be resolved. These sample attributes, in addition to the range of sizes to be examined, determine the required selectivity. Earlier work has shown that the limit of resolvability in SEC of molecules [i.e., the ability to completely resolve solutes of different sizes as a function of (1) plate number, (2) different solute shapes, and (3) media pore volumes] ranges from close to 20% for the molecular mass difference required to resolve spherical solutes down to near a 10% difference in molecular mass required for the separation of rod-shaped molecules (Hagel, 1993). To approach these limits, a SEC medium and a system with appropriate selectivity and efficiency must be employed. [Pg.30]


See other pages where Spherical completeness is mentioned: [Pg.33]    [Pg.1320]    [Pg.1643]    [Pg.2424]    [Pg.2587]    [Pg.84]    [Pg.185]    [Pg.212]    [Pg.192]    [Pg.371]    [Pg.56]    [Pg.354]    [Pg.483]    [Pg.123]    [Pg.328]    [Pg.235]    [Pg.67]    [Pg.521]    [Pg.1442]    [Pg.1584]    [Pg.2264]    [Pg.270]    [Pg.92]    [Pg.140]    [Pg.189]    [Pg.289]    [Pg.465]    [Pg.257]    [Pg.161]    [Pg.763]    [Pg.126]    [Pg.10]    [Pg.79]    [Pg.609]   
See also in sourсe #XX -- [ Pg.144 ]




SEARCH



Completeness of Vector Spherical Wave Functions

© 2024 chempedia.info