Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy useful methods

Vibrational spectroscopy provides detailed infonnation on both structure and dynamics of molecular species. Infrared (IR) and Raman spectroscopy are the most connnonly used methods, and will be covered in detail in this chapter. There exist other methods to obtain vibrational spectra, but those are somewhat more specialized and used less often. They are discussed in other chapters, and include inelastic neutron scattering (INS), helium atom scattering, electron energy loss spectroscopy (EELS), photoelectron spectroscopy, among others. [Pg.1149]

The focus of this chapter is photon spectroscopy, using ultraviolet, visible, and infrared radiation. Because these techniques use a common set of optical devices for dispersing and focusing the radiation, they often are identified as optical spectroscopies. For convenience we will usually use the simpler term spectroscopy in place of photon spectroscopy or optical spectroscopy however, it should be understood that we are considering only a limited part of a much broader area of analytical methods. Before we examine specific spectroscopic methods, however, we first review the properties of electromagnetic radiation. [Pg.369]

The formation of such materials may be monitored by several techniques. One of the most useful methods is and C-nmr spectroscopy where stable complexes in solution may give rise to characteristic shifts of signals relative to the uncomplexed species (43). Solution nmr spectroscopy has also been used to detect the presence of soHd inclusion compound (after dissolution) and to determine composition (host guest ratio) of the material. Infrared spectroscopy (126) and combustion analysis are further methods to study inclusion formation. For general screening purposes of soHd inclusion stmctures, the x-ray powder diffraction method is suitable (123). However, if detailed stmctures are requited, the single crystal x-ray diffraction method (127) has to be used. [Pg.74]

Spectroscopic methods for the deterrnination of impurities in niobium include the older arc and spark emission procedures (53) along with newer inductively coupled plasma source optical emission methods (54). Some work has been done using inductively coupled mass spectroscopy to determine impurities in niobium (55,56). X-ray fluorescence analysis, a widely used method for niobium analysis, is used for routine work by niobium concentrates producers (57,58). Paying careful attention to matrix effects, precision and accuracy of x-ray fluorescence analyses are at least equal to those of the gravimetric and ion-exchange methods. [Pg.25]

Aluminum is best detected quaUtatively by optical emission spectroscopy. SoHds can be vaporized direcdy in a d-c arc and solutions can be dried on a carbon electrode. Alternatively, aluminum can be detected by plasma emission spectroscopy using an inductively coupled argon plasma or a d-c plasma. Atomic absorption using an aluminum hoUow cathode lamp is also an unambiguous and sensitive quaUtative method for determining alurninum. [Pg.105]

Tungsten is usually identified by atomic spectroscopy. Using optical emission spectroscopy, tungsten in ores can be detected at concentrations of 0.05—0.1%, whereas x-ray spectroscopy detects 0.5—1.0%. ScheeHte in rock formations can be identified by its luminescence under ultraviolet excitation. In a wet-chemical identification method, the ore is fired with sodium carbonate and then treated with hydrochloric acid addition of 2inc, aluminum, or tin produces a beautiful blue color if tungsten is present. [Pg.284]

The possibility offered by new instruments to obtain N NMR spectra using natural abundance samples has made " N NMR spectroscopy a method which holds no interest for the organic chemist, since the chemical shifts are identical and the signal resolution incomparably better with the N nucleus (/ = ) than with " N (/ = 1). H- N coupling constants could be obtained from natural abundance samples by N NMR and more accurately from N-labelled compounds by H NMR. Labelled compounds are necessary to measure the and N- N coupling constants. [Pg.193]

MONITORIZATION OF Ca(OH), CONTENT IN ANHYDRITE, SUBPRODUCT OF HF PRODUCTION PROCESS, BY FT-IR SPECTROSCOPY USING PLS CALIBRATION METHOD... [Pg.200]

Relationships connecting stmcture and properties of primary alkylamines of normal stmcture C, -C gin chloroform and other solvents with their ability to extract Rh(III) and Ru(III) HCA from chloride solutions have been studied. The out-sphere mechanism of extraction and composition of extracted associates has been ascertained by UV-VIS-, IR-, and H-NMR spectroscopy, saturation method, and analysis of organic phase. Tertiary alkylamines i.e. tri-n-octylamine, tribenzylamine do not extract Ru(III) and Rh(III) HCA. The decrease of radical volume of tertiary alkylamines by changing of two alkyl radicals to methyl make it possible to diminish steric effects and to use tertiary alkylamines with different radicals such as dimethyl-n-dodecylamine which has not been used previously for the extraction of Rh(III), Ru(III) HCA with localized charge. [Pg.257]

In this chapter, three methods for measuring the frequencies of the vibrations of chemical bonds between atoms in solids are discussed. Two of them, Fourier Transform Infrared Spectroscopy, FTIR, and Raman Spectroscopy, use infrared (IR) radiation as the probe. The third, High-Resolution Electron Enetgy-Loss Spectroscopy, HREELS, uses electron impact. The fourth technique. Nuclear Magnetic Resonance, NMR, is physically unrelated to the other three, involving transitions between different spin states of the atomic nucleus instead of bond vibrational states, but is included here because it provides somewhat similar information on the local bonding arrangement around an atom. [Pg.413]

This kind of estimation of the relative concentration is the most widely used method for quantitative EELS analysis. It is advantageous because the dependence on the primary electron current, Iq, is cancelled out this is not easily determined in a transmission electron microscope under suitable analytical conditions. Eurthermore, in comparison with other methods, e. g. Auger electron spectroscopy and energy-disper-... [Pg.66]

Either UV-VIS or IR spectroscopy can be combined with the technique of matrix isolation to detect and identify highly unstable intermediates. In this method, the intomediate is trapped in a solid inert matrix, usually one of the inert gases, at very low temperatures. Because each molecule is surrounded by inert gas atoms, there is no possiblity for intermolecular reactions and the rates of intramolecular reactions are slowed by the low temperature. Matrix isolation is a very useful method for characterizing intermediates in photochemical reactions. The method can also be used for gas-phase reactions which can be conducted in such a way that the intermediates can be rapidly condensed into the matrix. [Pg.227]

It is useful to compare the spectroscopic data of 1,2,4-triazine mono-A-oxides with the data for the corresponding 1,2,4-triazines. Introduction of an A-oxide group in the 1,2,4-triazine ring changes its physicochemical properties dramatically, and the analysis of these changes allows one to determine which of three nitrogens is oxidized. The most useful method in this case is NMR spectroscopy, including H, C, and N NMR. [Pg.262]

In addition to in situ NMR spectroscopy, other methods such as in situ IR spectroscopy, EXAFS, and electrochemistry should be very useful for the investigation of active catalytic species in ionic liquids. However, far too little effort has been directed to this end in recent years. [Pg.228]

Mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance spectroscopy are techniques of structure determination applicable to all organic molecules. In addition to these three generally useful methods, there s a fourth—ultraviolet (UV) spectroscopy—that is applicable only to conjugated systems. UV is less commonly used than the other three spectroscopic techniques because of the specialized information it gives, so we ll mention it only briefly. [Pg.500]

The melting process of potassium fluorotantalate, K2TaF7, was investigated by IR emission spectroscopy using thick layers of the melt [356]. It should be mentioned that in some cases, if the temperature of the sample is high enough, the above method enables to obtain spectra of the material in solid state as well. [Pg.176]

The application of NMR spectroscopy to tacticity determination of synthetic polymers was pioneered by Bovey and Tiers.9 NMR spectroscopy is the most used method and often the only technique available for directly assessing tacticity of polymer chains. "2 7 8 0JI The chemical shift of a given nucleus in or attached to the chain may be sensitive to the configuration of centers three or more monomer units removed. Other forms of spectroscopy (e.g. TR spectroscopy l2 lJ) are useful with some polymers and various physical properties (e.g. the Kerr effect14) may also be correlated with tacticity. [Pg.173]

Advantage was taken of these solubility differences in refining mixtures of the chlorinated dibenzodioxins. Digestion with boiling chloroform was effective in removing trichlorodibenzodioxin while recrystallization from anisole reduced the penta-substituted isomer content. In a typical purification (Table II) these two procedures were alternated through four cycles. The assays were made by mass spectroscopy using the batch injection method to introduce the sample into the spectrometer. X-ray studies 14) confirmed the structure. [Pg.4]

In the previous Maxwelhan description of X-ray diffraction, the electron number density n(r, t) was considered to be a known function of r,t. In reality, this density is modulated by the laser excitation and is not known a priori. However, it can be determined using methods of statistical mechanics of nonlinear optical processes, similar to those used in time-resolved optical spectroscopy [4]. The laser-generated electric field can be expressed as E(r, t) = Eoo(0 exp(/(qQr ot)), where flo is the optical frequency and q the corresponding wavevector. The calculation can be sketched as follows. [Pg.267]

Porous materials, such as silica and alumina, have thermal diffusion lengths of approximately 10 m, which is much less than the typical thickness of pressed discs. The small thermal diffusion length gives photoacoustic spectroscopy a larger dynamic range than transmission methods when applied to powdered samples. An additional advantage is the ease of sample preparation, since photoacoustic spectroscopy uses powdered samples with no special preparation required. [Pg.450]

The miniaturized Mossbauer spectrometer MIMOS II has been used already in several terrestrial applications which would not have been possible before. A number of other possible terrestrial applications, for example, in the field, in industry, and fundamental research, are under consideration. With the new generation of the Mossbauer spectrometer MIMOS 11, the method itself can be applied to numerous new fields in research, environmental science, planetary science, and many other fields. Because of this reason, Mossbauer spectroscopy may become a more widely used method than it is today. [Pg.464]

The total metal concentration in a solution can be easily determined using methods such as atomic absorption spectroscopy (AAS) however, the bioavailability of different metal species likely varies. In addition, much of the original concentration may have speciated into insoluble precipitates. Therefore, the concentration of some bioavailable species may be extremely low, perhaps even within or below the nanomolar range.99 Ion-selective electrodes are useful for measuring the bioavailable concentration of a metal because they measure only the free, ionic species, which is often most prevalent.102... [Pg.417]


See other pages where Spectroscopy useful methods is mentioned: [Pg.1581]    [Pg.8]    [Pg.45]    [Pg.424]    [Pg.342]    [Pg.56]    [Pg.399]    [Pg.395]    [Pg.317]    [Pg.323]    [Pg.429]    [Pg.391]    [Pg.50]    [Pg.51]    [Pg.82]    [Pg.296]    [Pg.612]    [Pg.667]    [Pg.96]    [Pg.102]    [Pg.564]    [Pg.248]    [Pg.564]    [Pg.293]    [Pg.216]    [Pg.7]    [Pg.195]    [Pg.344]    [Pg.348]   
See also in sourсe #XX -- [ Pg.16 ]




SEARCH



Spectroscopy method

© 2024 chempedia.info