Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectrophotometry monitoring

Spectrophotometrie monitoring of the fast and slow phases provides all the rate constants involved in equations (33). Some typical values are listed in Table XVIII. [Pg.49]

Relaxation kinetics may be monitored in transient studies tlirough a variety of metliods, usually involving some fonn of spectroscopy. Transient teclmiques and spectrophotometry are combined in time resolved spectroscopy to provide botli tire stmctural infonnation from spectral measurements and tire dynamical infonnation from kinetic measurements that are generally needed to characterize tire mechanisms of relaxation processes. The presence and nature of kinetic intennediates, metastable chemical or physical states not present at equilibrium, may be directly examined in tliis way. [Pg.2946]

Some preliminary laboratory work is in order, if the information is not otherwise known. First, we ask what the time scale of the reaction is surely our approach will be different if the reaction reaches completion in 10 ms, 10 s, 10 min, or 10 h. Then, one must consider what quantitative analytical techniques can be used to monitor it progress. Sometimes individual samples, either withdrawn aliquots or individual ampoules, are taken. More often a nondestructive analysis is performed, the progress of the reaction being monitored continuously or intermittently by a technique such as ultraviolet-visible spectrophotometry or nuclear magnetic resonance. The fact that both reactants and products might contribute to the instrument reading will not prove to be a problem, as explained in the next chapter. [Pg.10]

Recent work in this laboratory has sought to provide some of this information. Unfortunately, absorption spectrophotometry is not suitable for monitoring the formation of Pu(IV) polymer... [Pg.238]

Second-derivative spectrophotometry has been used to monitor the time-dependent production of cis,tmns-(Xmax 242 nm) and trans, tram- (Xmax 232 nm) diene conjugates of microsomal PUFAs following the exposure of rats to carbon tetrachloride (CCU) (Corongui et al., 1986). These signals have been postulated to be derived from mixtures of peroxidized substrates. Previous studies using chemical model systems have established that autoxidation of linolenic or arachidonic acid results in the production of cis, trans- and tmns, trawr-conjugated diene... [Pg.14]

The most common method used to monitor inorganic Pb is the determination of Pb in whole blood by GF-AAS. Exposure to organic lead (i.e. tetraethyl lead) can be monitored by the determination of Pb in mine by GF-AAS (Christensen and Kristiansen 1994). Early effects of exposure to Pb on the heme synthesis can be monitored by determination of the inhibition of the enayme 8-aminolevulinic acid dehydratase in whole blood or 8-aminolevulinic acid in urine by spectrophotometry. [Pg.204]

UV/VIS spectrophotometry can be used to determine many physico-chemical characteristics of compounds and thus can provide information as to the identity of a particular compound. Although UV/VIS spectra do not enable absolute identification of an unknown, they are frequently used to confirm the identity of a substance through comparison of the measured spectrum with a reference spectrum. However, UV spectrophotometry is not highly specific, and can obviously only be applied to polymer additives which are absorbers of UV radiation, i.e. contain chromophoric groups. Both UV and IR monitor functional entities rather than the entire molecular structure. A functional group s proximity to other electropositive or electronegative structures in a molecule affects the absorbance spectrum, allowing one to infer some details of molecular structure. [Pg.304]

Applications Applications of UV/VIS spectrophotometry can be found in the areas of extraction monitoring and control, migration and blooming, polymer impregnation, in-polymer analysis, polymer melts, polymer-bound additives, purity determinations, colour body analysis and microscopy. Most samples measured with UV/VIS spectroscopy are in solution. However, in comparison to IR spectroscopy additive analysis in the UV/VIS range plays only a minor role as only a limited class of compounds exhibits specific absorption bands in the UV range with an intensity proportional to the additive concentration. Characteristic UV absorption bands of various common polymer additives are given in Scheirs [24],... [Pg.307]

UV/VIS spectrophotometry can also be used for extraction monitoring on the basis of the chromophore of functional classes and to follow up polymer impregnation with additives in scC02 [81]. [Pg.311]

A large variety of aqueous and a few nonaqueous solutions have been used or proposed as chemical dosimeters with respective dose ranges for use (Spinks and Woods, 1990 Draganic and Draganic, 1971). Of these, a special mention may be made of the hydrated electron dosimeter for pulse radiolytic use (l(h2 to 10+2 Gy per pulse). It is composed of an aqueous solution of 10 mM ethanol (or 0.7 mM H2) with 0.1 to 10 mM NaOH. Concentration of hydrated electrons formed in the solution by the absorption of radiation is monitored by fast spectrophotometry, which is then used for dosimetry with the known G value of the hydrated electron. [Pg.364]

In order to use the stopped-flow technique, the reaction under study must have a convenient absorbance or fluorescence that can be measured spectrophotometri-cally. Another method, called rapid quench or quench-flow, operates for enzymatic systems having no component (reactant or product) that can be spectrally monitored in real time. The quench-flow is a very finely tuned, computer-controlled machine that is designed to mix enzyme and reactants very rapidly to start the enzymatic reaction, and then quench it after a defined time. The time course of the reaction can then be analyzed by electrophoretic methods. The reaction time currently ranges from about 5 ms to several seconds. [Pg.123]

It therefore became more convenient to monitor the reaction progress with UV/Visible spectrophotometry, because all the pyridine N-oxides have strong absorption bands near 330 nm, with e 103Lmol 1cm 1. Two approaches for the analysis of the kinetic data were used. In the first but much less precise method, the initial reaction rates were calculated from the objective method of fitting the experimental values of [PyOL to this function (30) ... [Pg.166]

Always based on the use of IR spectrophotometry, a novel attenuated total reflection-Fourier-transform infrared (ATR-FTIR) sensor [42] was proposed for the on-line monitoring of a dechlorination process. Organohalogenated compounds such as trichloroethylene (TCE), tetrachloroethylene (PCE) and carbon tetrachloride (CT) were detected with a limit of a few milligrams per litre, after extraction on the ATR internal-reflection element coated with a hydro-phobic polymer. As for all IR techniques, partial least squares (PLS) calibration models are needed. As previously, this system is promising for bioprocess control and optimization. [Pg.261]

Both urban and industrial wastewater often contains high concentrations of surfactants. Cationic (like alkylbenzene sulphonates) and non-ionic surfactants (like alcohol ethoxylates) are among the most-used surfactants and are discharged into sewers in widely varying concentrations. Two on-line methods have been designed for the monitoring of cationic surfactants with UV spectrophotometry [46] and non-ionic surfactants by on-line titration [47]. The detection limits are around 10 mg L. ... [Pg.262]

Groups of ten male Crl CD rats were exposed to HCN in polymethymethacrylate exposure chambers under flow-through conditions (E.I. du Pont de Nemours 1981). The chamber atmosphere was measured continuously by infrared spectrophotometry measurements were validated by gas chromatography. The experiment was performed in duplicate with one set of animals exposed head-only to the test gas while the other set was allowed free movement inside the exposure chamber. Free-moving rats inhaled concentrations of 273 to 508 ppm for 5 min, 110 to 403 ppm for 15 min, 128 to 306 ppm for 30 min, or 76 to 222 ppm for 60 min. The postexposure observation period was 14 d, during which body weights were monitored. [Pg.244]

Data adequacy The study was well conducted. The HCN concentrations were continuously monitored using infrared spectrophotometry and validated by gas chromatography. [Pg.293]

The thermal decomposition of N02 has been studied222-224 in the temperature range 1400-2300 °K by the shock-tube technique. Changes in the concentration of N02 in shock-heated argon-diluted N02 were monitored by visible absorption222 or visible emission224 spectrophotometry. The data fitted a complex rate law of the form... [Pg.86]

The use of spectrophotometry to monitor enzyme-catalysed reactions (Table 8.6) is a very convenient and popular method owing to the simplicity of the technique and the precision that is possible. The technique lends itself readily not only to temperature control using water-jacketed or electrically heated cell holders but also to the measurement of initial velocities by continuous monitoring and recording techniques or by automated analysis systems. [Pg.286]

Conventional, flow, temperature-jump, ultrasonic absorption, electric-field jump and nmr line broadening have all been used to measure the rates. UV-vis spectrophotometry and conductivity are the monitoring methods of choice. A variety of solvents have been used. The focus has been often on the dissociation since the dissociation rate constant appears in general to be the main controller of the overall stability. [Pg.224]

Spectrophotometry has been a popular means of monitoring redox reactions, with increasing use being made of flow, pulse radiolytic and laser photolytic techniques. The majority of redox reactions, even those with involved stoichiometry, have seeond-order characteristics. There is also an important group of reactions in which first-order intramolecular electron transfer is involved. Less straightforward kinetics may arise with redox reactions that involve metal complex or radical intermediates, or multi-electron transfer, as in the reduction of Cr(VI) to Cr(III). Reactants with different equivalences as in the noncomplementary reaction... [Pg.258]

Another transient aminoxyl radical has been generated , and employed in H-abstraction reactivity determinations" . Precursor 1-hydroxybenzotriazole (HBT, Table 2) has been oxidized by cyclic voltammetry (CV) to the corresponding >N—O species, dubbed BTNO (Scheme 9). A redox potential comparable to that of the HPI —PINO oxidation, i.e. E° 1.08 V/NHE, has been obtained in 0.01 M sodium acetate buffered solution at pH 4.7, containing 4% MeCN". Oxidation of HBT by either Pb(OAc)4 in AcOH, or cerium(IV) ammonium nitrate (CAN E° 1.35 V/NHE) in MeCN, has been monitored by spectrophotometry , providing a broad UV-Vis absorption band with A-max at 474 nm and e = 1840 M cm. As in the case of PINO from HPI, the absorption spectrum of aminoxyl radical BTNO is not stable, but decays faster (half-life of 110 s at [HBT] = 0.5 mM) than that of PINO . An EPR spectrum consistent with the structure of BTNO was obtained from equimolar amounts of CAN and HBT in MeCN solution . Finally, laser flash photolysis (LFP) of an Ar-saturated MeCN solution of dicumyl peroxide and HBT at 355 nm gave rise to a species whose absorption spectrum, recorded 1.4 ms after the laser pulse, had the same absorption maximum (ca 474 nm) of the spectrum recorded by conventional spectrophotometry (Scheme 9)59- 54... [Pg.718]

Because the loss of the sugar from C-8 adducts cannot be easily explained, we determined rates of deglycosylation for a number of substituted 8-Ph-dG adducts in aqueous solution. First-order rate constants were determined spectrophotometri-cally by monitoring the formation of the deglycosylated product at its absorbance maximum. Figure 8 shows plots of half-lives (A/2) versus Hammett fr+ values for the adducts in 0.1 N HCl (a) and citrate buffer at pH 4 (b). In 0.1 N HCl at 37°C, ti/2... [Pg.198]


See other pages where Spectrophotometry monitoring is mentioned: [Pg.83]    [Pg.83]    [Pg.2949]    [Pg.635]    [Pg.142]    [Pg.418]    [Pg.254]    [Pg.423]    [Pg.88]    [Pg.651]    [Pg.464]    [Pg.309]    [Pg.309]    [Pg.29]    [Pg.157]    [Pg.381]    [Pg.25]    [Pg.201]    [Pg.282]    [Pg.414]    [Pg.97]    [Pg.153]    [Pg.669]    [Pg.373]    [Pg.134]    [Pg.155]    [Pg.393]    [Pg.338]    [Pg.89]   


SEARCH



© 2024 chempedia.info