Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sorbent temperature

The reader will find adsorption equilibrium relationships presented in any of three typical forms. The form of equilibrium most frequently presented is the isotherm, the partial pressure as a function of the loading at a given constant sorbent temperature. An isobar implies a chart of the loading as a function of the temperature while the partial pressure of the sorbate is held constant. [Pg.276]

The adsorphon constant K is the equivalent Henry s Law constant and is found to be temperature- and heat-dependent. The most common way of describing the adsorphon constant is through an expression using the heat and the sorbent temperature ... [Pg.277]

Development of matrix solid-phase dispersion (MSPD) concerning New sorbents Temperature and pressure of extraction Cleanup of extracts Miniaturization Extraction of organic xenobiotics from a variety of solid, semisolid, and viscous environmental and biological matrices 70-75... [Pg.442]

New portions of the feed mixture gradually cool down the hot section of the sorbent bed and soon complete its saturation process. The length of the heat wave with a significantly enhanced sorbent temperature amounts to no more than 7—10 cm, even in the case of percolating the concentrated pentane/air mixture. Therefore, only a small portion of the total column experiences the temporary reduction of its adsorption capacity and, at the moment of pentane arrival at the column outlet, the major capacity of the sorbent bed proves to be used up almost completely. The heat evolution is less significant and the capacity loss is much smaller in the case of lower concentrations of pentane in the feed. [Pg.395]

Sohd sorbent materials have the abiUty to adsorb water vapor until an equiUbrium condition is attained. The total weight of water that can be adsorbed in a particular material is a function of the temperature of the material and of the relative humidity of the air (see Adsorption). To regenerate the sorbent, its temperature must be raised or the relative humidity lowered. The sohd sorbents most commonly used are siUca (qv), alumina (see Aluminum compounds), and molecular sieves (qv). [Pg.362]

The Dravo hydrate addition at low temperature process involves a two-step injection of water and dry sorbent in a rectangular 19.8-m duct having a cross section of 2 m. In one step water is injected through atomization nozzles to cool the flue gas from 150°C to approximately a 15°C approach to adiabatic saturation. The other step involves the dry injection of hydrated lime, either downstream or upstream of the humidifica tion nozzles. Typical SO2 removals were 50—60% at a Ca S ratio of 2. [Pg.261]

The working capacity of a sorbent depends on fluid concentrations and temperatures. Graphical depiction of soration equilibrium for single component adsorption or binary ion exchange (monovariance) is usually in the form of isotherms [n = /i,(cd or at constant T] or isosteres = pi(T) at constant /ij. Representative forms are shown in Fig. I6-I. An important dimensionless group dependent on adsorption equihbrium is the partition ratio (see Eq. 16-125), which is a measure of the relative affinities of the sorbea and fluid phases for solute. [Pg.1497]

Adsorption and Desorption Adsorbents may be used to recover solutes from supercritical fluid extracts for example, activated carbon and polymeric sorbents may be used to recover caffeine from CO9. This approach may be used to improve the selectivity of a supercritical fluid extraction process. SCF extraction may be used to regenerate adsorbents such as activated carbon and to remove contaminants from soil. In many cases the chemisorption is sufficiently strong that regeneration with CO9 is limited, even if the pure solute is quite soluble in CO9. In some cases a cosolvent can be added to the SCF to displace the sorbate from the sorbent. Another approach is to use water at elevated or even supercritical temperatures to facilitate desorption. Many of the principles for desorption are also relevant to extraction of substances from other substrates such as natural products and polymers. [Pg.2003]

For a bituminous coal containing 3 percent siilfur with limestone sorbent and a combustion temperature of 1115 K (1550°F), combus-... [Pg.2401]

ICP-SFMS (Thermo Finnigan, Flement) with cold vapour generation was developed with a guard electrode and a gold amalgamation device using an Au-sorbent for sample pre-concentration to improve the sensitivity. Instrumental parameters of ICP-SFMS such as take-up time, heating temperature of Au-sorbent, additional gas flow, and sample gas flow were optimized. Detection limit calculated as 3 times the standard deviation of 10 blanks was 0,05 ng/1, RSD = 7-9 %. [Pg.171]

It has been shown by IR-spectroscopic investigations which evidence on the appearance of new absorption bands after chitosan introducing, elementary analyses data. (N, occurrence in the samples, which quantity depends on chitosan nature and isolation conditions) It leads to significant increase of sorption capacity and specific surface of sorbents, which contain chitosan from silk waren chrysalises. Where as these parameters decrease for sorbents with chitosan from crabs. Evidently it is connected to more dense structure of the last one. It has been shown, that yield of sorbent on the base of PES and chitosan obtained by sol-gel method has depended significantly on such factors as components ratio, temperature, catalyst quantity etc. [Pg.203]

Theoretical and applied aspects of microwave heating, as well as the advantages of its application are discussed for the individual analytical processes and also for the sample preparation procedures. Special attention is paid to the various preconcentration techniques, in part, sorption and extraction. Improvement of microwave-assisted solution preconcentration is shown on the example of separation of noble metals from matrix components by complexing sorbents. Advantages of microwave-assisted extraction and principles of choice of appropriate solvent are considered for the extraction of organic contaminants from solutions and solid samples by alcohols and room-temperature ionic liquids (RTILs). [Pg.245]

The effect of a way of obtaining ChCS, time of realization of a sorption, temperature of a sorption, density and pH of sorbate on process of a sorption was studied. It is established, that chitincontaining sorbents ai e strong at pH<5 and are capable for effective heavy metals ions absorption from acid water solutions. [Pg.288]

All packing materials produced at PSS are tested for all relevant properties. This includes physical tests (e.g., pressure stability, temperature stability, permeability, particle size distribution, porosity) as well as chromatographic tests using packed columns (plate count, resolution, peak symmetry, calibration curves). PSS uses inverse SEC methodology (26,27) to determine chromatographic-active sorbent properties such as surface area, pore volume, average pore size, and pore size distribution. Table 9.10 shows details on inverse SEC tests on PSS SDV sorbent as an example. Pig. 9.10 shows the dependence... [Pg.288]

A programmed-temperature vaporizer (PTV) has also been used as an interface for introducing the LC fraction to the GC unit (84,96) and to desorb the analytes retained in the SPE sorbent contained in the PTV liner. Water samples can then be injected directly in to the PTV injector. [Pg.362]


See other pages where Sorbent temperature is mentioned: [Pg.179]    [Pg.140]    [Pg.185]    [Pg.116]    [Pg.36]    [Pg.179]    [Pg.140]    [Pg.185]    [Pg.116]    [Pg.36]    [Pg.362]    [Pg.206]    [Pg.10]    [Pg.215]    [Pg.375]    [Pg.375]    [Pg.260]    [Pg.261]    [Pg.275]    [Pg.1497]    [Pg.1498]    [Pg.2386]    [Pg.2387]    [Pg.2387]    [Pg.2399]    [Pg.2400]    [Pg.2400]    [Pg.2401]    [Pg.2401]    [Pg.216]    [Pg.378]    [Pg.185]    [Pg.21]    [Pg.164]    [Pg.239]    [Pg.140]    [Pg.339]    [Pg.11]    [Pg.40]    [Pg.130]   


SEARCH



Sorbent selection, high temperature

© 2024 chempedia.info