Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sonochemical preparation, nanoparticles reductants

Abstract A convenient method to synthesize metal nanoparticles with unique properties is highly desirable for many applications. The sonochemical reduction of metal ions has been found to be useful for synthesizing nanoparticles of desired size range. In addition, bimetallic alloys or particles with core-shell morphology can also be synthesized depending upon the experimental conditions used during the sonochemical preparation process. The photocatalytic efficiency of semiconductor particles can be improved by simultaneous reduction and loading of metal nanoparticles on the surface of semiconductor particles. The current review focuses on the recent developments in the sonochemical synthesis of monometallic and bimetallic metal nanoparticles and metal-loaded semiconductor nanoparticles. [Pg.151]

Gedanken and his group were searching to replace the Ni(CO)4, which was the source for the preparation of nickel, and is known to be a hazardous material. They found [67] a new precursor for the sonochemical preparation of amorphous nickel, Ni(cyclooctadiene)2, which yielded relatively large (200 nm) amorphous nanoparticles composed of nickel and carbon atoms. Small nickel particles were dispersed all over the particle. When these particles were heated slightly above their crystallization temperature, much smaller particles (5 nm) of encapsulated crystalline nickel in amorphous carbon were obtained. The XPS spectrum reveals that the crystallization process is also accompanied by the reduction of the surface Ni+ ions by the amorphous carbon atoms. The DSC measurements substantiate this assumption. [Pg.128]

Other one-pot preparations of bimetallic nanoparticles include NOct4(BHEt3) reduction of platinum and ruthenium chlorides to provide Pto.sRuo.s nanoparticles by Bonnemann et al. [65-67] sonochemical reduction of gold and palladium ions to provide AuPd nanoparticles by Mizukoshi et al. [68,69] and NaBH4 reduction of dend-rimer—PtCl4 and -PtCl " complexes to provide dend-rimer-stabilized PdPt nanoparticles by Crooks et al. [70]. [Pg.53]

Vinodgopal et al. prepared Pt/Ru bimetallic nanoparticles by sonochemical reduction of Pt(II) and Ru(III) in aqueous solutions. TEM images indicated that sequential reduction of the Pt(II) followed by the Ru(III) produced Pt-core/Ru-shell bimetallic nanoparticles. In the presence of sodium dodecyl sulfate (SDS), as a stabilizer, the nanoparticles had diameters between 5 and 10 nm. When PVP was used as the stabilizer, the rate of reduction is much faster, giving ultrasmall bimetallic nanoparticles of ca. 5nm diameter [141]. [Pg.56]

Kan et al. reported preparation of Au-core/Pd-shell bimetallic nanoparticles by successive or simultaneous sonochemical irradiation of their metal precursors in ethylene glycol, respectively. In the successive method, Pd clusters or nanoparticles are first formed by reduction of Pd(N03)2, followed by adding HAUCI4 solution. As a result, Au-core/Pd-shell structured particles are formed, although Pd-core/Au-shell had been expected. In their investigations, the successive method was more effective than the simultaneous one in terms of the formation of the Au-core/Pd-shell nanoparticles [143]. [Pg.56]

It has been reported that bimetallic nanoparticles with core/shell structure can be prepared by ultrasonic irradiation. Mizukoshi et al. reported the formation of bimetallic nanoparticles of Au core/Pd shell structure [42,43] from the sonochemical reduction of Au(III) and Pd(II), where the stepwise reduction of metal ions was observed to proceed during ultrasonic irradiation. That is, the reduction of Pd(II) started after the reduction of Au(III) finished. Vinodgopal et al. reported... [Pg.145]

As described in this chapter, the sonochemical reduction technique appears to be a promising method for the preparation of various types of metal nanoparticles in an aqueous solution. By choosing more efficient organic additives, easily-reducible metal precursors, supports and templates with an appropriate role, more advanced functional nanoparticles could be synthesized successfully using the sonochemical reduction technique. In future, it is also possible to develop effective synthetic methods by combining the sonochemical method with other chemical methods. [Pg.148]

Mizukoshi Y, Takagi E, Okuno H, Oshima R, Maeda Y, Nagata Y (2001) Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions role of surfactants. Ultrason Sonochem 8 1-6... [Pg.150]

Fig. 6.10 UV-vis absorption spectra of gold - ruthenium bimetallic nanoparticles prepared by the sonochemical co-reduction method using (a) 1 1 and (b) 1 5 gold - ruthenium compositions, respectively [45]... Fig. 6.10 UV-vis absorption spectra of gold - ruthenium bimetallic nanoparticles prepared by the sonochemical co-reduction method using (a) 1 1 and (b) 1 5 gold - ruthenium compositions, respectively [45]...
Palladium metallic clusters have been prepared at room temperature by sonochemical reduction of Pd(OAc)2 and a surfactant, myristyltrimethylammonium bromide, in THE or MeOH [160[. It is noteworthy that nanosized amorphous Pd is obtained in THE, but in a crystalline form in MeOH. In this solvent, and in higher homologous alcohols, sonolysis of tetrachloropalladate(II) leads to Pd nanoclusters in which carbon atoms, formed by complete decomposition of the solvent, can diffuse. This results in an interstitial solid having the formula PdQ (0 < x < 0.15) [161]. Noble metal nanoparticles of Au, Pd, and Ag are obtained by sonicating aqueous solutions of the corresponding salts in the presence of a surfactant, which largely stabilise the naked col-... [Pg.122]

Highly dispersed palladium nanoparticles immobilized on alumina were prepared via the sonochemical reduction by alcohols of Pd(II).366 The activity of these catalysts was 3-7 times higher in the hydrogenation of alkenes than that of conventional catalysts, and they showed a high preference to hydrogenate 1-hexene over trans-3-hexene. [Pg.668]

Another III-V semiconductor was prepared by Li and coworkers [143]. A room temperature sonochemical method for the preparation of GaSb nanoparticles using less hazardous Ga and antimony chloride (SbClj) as the precursors has been described. TEM and SAED results show that the as-prepared solid consists of nanosized GaSb crystals with sizes in the 20-30 run range. The photoacoustic spectrum result reveals that the GaSb nanopartides have a direct band gap of about 1.21 eV. On the basis of the control experiments and the extreme conditions produced by ultrasound, an ultrasound-assisted in situ reduction/combination mechanism has been proposed to explain the reaction. [Pg.148]

Metal nanoparticles can be prepared in a myriad of ways, e.g., by pulse radiolysis [110], vapor synthesis techniques [111], thermal decomposition of organometallic compounds [112], sonochemical techniques [113,114], electrochemical reduction [115,116], and various chemical reduction techniques. Some of the most frequently used reducing agents include alcohols [117,118], citrate [119,120], H2 [121], borohydrides [122], and, more recently, superhydride [123]. The chosen experimental conditions determine the size, size distribution, shape, and stability of the particles. Because naked metal particles tend to aggregate readily in solution, stabilizing the nanoparticles is the key factor for a successful synthesis. Sometimes the solvent can act as a stabilizer, but usually polymers and surfac-... [Pg.632]

Various approaches were developed to prepare silver nanoparticles with the size less than 100 nm photolytic [7] and radiolytic reduction [8], the sonochemical method [9], solvent extraction reduction [10]. Among these methods, chemical reduction is the most common one. One could control the intrinsic properties of synthesized silver nanoparticles during chemical synthesis [11] by reducing the concentration of silver salts and using larger amount of stabilizer to avoid aggregation of the nanoparticles. [Pg.554]

Nanocomposites are materials in which nanoparticles (in this case, nanorods) are dispersed in a continuous matrix. The matrix may be a polymer, nanorods, or other nanoparticles. Nanorod composites find applications in diverse areas such as efficient charge storage, removal of contaminants (e.g. surfactant) from water, emissivity control devices, and metallodielectrics, and so on. A number of methods such as electroless deposition, the sol-gel method, the hydrothermal method, solution casting, carbother-mal reduction, the template-based method, the sonochemical method, and electrospinning can be used to prepare composite nanorods. Nanorod composites are different from core-shell nanorods. In core-shell nanorods, the coating is uniform, whereas in the nanorod composite (consisting of a nanorod and a nanoparticle on a surface), fine nanoparticles are dispersed on the surface of the nanorods. Some specific examples of the preparation of nanocomposites consisting of nanorods are described below. [Pg.188]

Organosols of Pd have also been obtained by the sonochemical reduction of Pd(02CCH3)2 and myristyltrimethylammoninm bromide in THF or methanol [401]. Gadenken and coworkers [402] have obtained luminescent Si nanoparticles by the sonochemical reduction of tetraethoxyorthosilicate (TEOS) with a colloidal solution of Na in toluene. Si nanocrystals have been prepared by ultrasonically dispersing porous Si [403,404]. A variety of solvents were found suitable to prepare such dispersions. [Pg.53]

There have been a number of synthetic protocols for the preparation of transition-metal nanoparticles, for example, vapor condensation, sonochemical reduction, chemical liquid deposition, reflux alcohol reduction, decomposition of organometallic precursors, hydrogen reduction, etc. Of these, the colloidal reduction route provides a powerful platform for the ready manipulation of particle structure and functionalization. One excellent example is the biphasic Brust method, in which nanoparticles are formed by chemical reduction of a metal salt precursor in the presence of stabilizing ligands. In a typical reaction, a calculated amount of a metal salt precursor is dissolved in water, and the metal ions are then transferred into the toluene phase by ion-pairing with a... [Pg.177]


See other pages where Sonochemical preparation, nanoparticles reductants is mentioned: [Pg.50]    [Pg.143]    [Pg.244]    [Pg.413]    [Pg.29]    [Pg.59]    [Pg.131]    [Pg.142]    [Pg.143]    [Pg.157]    [Pg.158]    [Pg.161]    [Pg.204]    [Pg.245]    [Pg.256]    [Pg.123]    [Pg.334]    [Pg.404]    [Pg.401]    [Pg.329]    [Pg.818]    [Pg.52]    [Pg.53]    [Pg.28]    [Pg.206]    [Pg.167]    [Pg.78]    [Pg.550]   
See also in sourсe #XX -- [ Pg.153 ]




SEARCH



Nanoparticles preparation

Preparation reduction

Sonochemical

Sonochemical preparation, nanoparticles

Sonochemical reduction

Sonochemically

© 2024 chempedia.info