Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvents specific chemicals

Once the radicals diffuse out of the solvent cage, reaction with monomer is the most probable reaction in bulk polymerizations, since monomers are the species most likely to be encountered. Reaction with polymer radicals or initiator molecules cannot be ruled out, but these are less important because of the lower concentration of the latter species. In the presence of solvent, reactions between the initiator radical and the solvent may effectively compete with polymer initiation. This depends very much on the specific chemicals involved. For example, carbon tetrachloride is quite reactive toward radicals because of the resonance stabilization of the solvent radical produced [1] ... [Pg.352]

Equation (8.49) accounts only for endothermic mixing. It is not too surprising that we are thus led to associate exothermic values with more specifically chemical interactions between solvent and solute as opposed to the purely physical interactions we have been describing in this approximation. [Pg.527]

Solvent Resistance. At temperatures below the melting of the crystallites, the parylenes resist all attempts to dissolve them. Although the solvents permeate the continuous amorphous phase, they are virtually excluded from the crystalline domains. Consequently, when a parylene film is exposed to a solvent a slight swelling is observed as the solvent invades the amorphous phase. In the thin films commonly encountered, equilibrium is reached fairly quickly, within minutes to hours. The change in thickness is conveniently and precisely measured by an interference technique. As indicated in Table 6, the best solvents, specifically those chemically most like the polymer (eg, aromatics such as xylene), cause a swelling of no more than 3%. [Pg.439]

The high fluorine content contributes to resistance to attack by essentially all chemicals and oxidizing agents however, PCTFE does swell slightly ia halogenated compounds, ethers, esters, and selected aromatic solvents. Specific solvents should be tested. PCTFE has the lowest water-vapor transmission rate of any plastic (14,15), is impermeable to gases (see also Barrierpolymers), and does not carbonize or support combustion. [Pg.393]

Because they are weak acids or bases, the iadicators may affect the pH of the sample, especially ia the case of a poorly buffered solution. Variations in the ionic strength or solvent composition, or both, also can produce large uncertainties in pH measurements, presumably caused by changes in the equihbria of the indicator species. Specific chemical reactions also may occur between solutes in the sample and the indicator species to produce appreciable pH errors. Examples of such interferences include binding of the indicator forms by proteins and colloidal substances and direct reaction with sample components, eg, oxidising agents and heavy-metal ions. [Pg.468]

The principal component of primary amyl alcohol, 1-pentanol, although itself a good solvent, is useful for the preparation of specific chemicals such as pharmaceuticals and other synthetics (153,154). Production of primary amyl acetate and its esters for solvent appHcations has seen low growth since the 1970s because of the decline of nitroceUulose lacquers and the introduction of new solvent systems. [Pg.376]

Other types of regenerators designed for specific adsorption systems may use solvents and chemicals to remove susceptible adsorbates (51), steam or heated inert gas to recover volatile organic solvents (52), and biological systems in which organics adsorbed on the activated carbon during water treatment are continuously degraded (53). [Pg.532]

Earlier analyses making use of AH vs. AS plots generated many p values in the experimentally accessible range, and at least some of these are probably artifacts resulting from the error correlation in this type of plot. Exner s treatment yields p values that may be positive or negative and that are often experimentally inaccessible. Some authors have associated isokinetic relationships and p values with specific chemical phenomena, particularly solvation effects and solvent structure, but skepticism seems justified in view of the treatments of Exner and Krug et al. At the present time an isokinetic relationship should not be claimed solely on the basis of a plot of AH vs. A5, but should be examined by the Exner or Krug methods. [Pg.371]

Sometimes the type of coating is determined by special requirements such as abrasion or heat resistance. The coating may have to withstand specific chemicals or solvents. All coatings have to be a compromise of properties. A gain in one may be a loss in another. [Pg.136]

Another serious effect occurs with liquids which are not in themselves solvents but which may wet the polymer surfaces. These facilitate relief of frozen-in stresses by surface cracking which can be a severe problem in using many injection and blow mouldings with specific chemicals. Examples of this are white spirit with polystyrene, carbon tetrachloride with polycarbonates and soaps and silicone oils with low molecular weight polyethylenes. [Pg.922]

Although it is difficult to predict exactly which solute molecules will form clathrate solutions in any given host lattice, the general principle is quite clear. All molecules which fit into the cavities will be able to stabilize the host lattice, unless they show a specific chemical interaction with the solvent molecules. HC1 (or the other hydrogen halides), for instance, does not form a clathrate with water, but rather the stoichiometric compounds HC1 H20,... [Pg.4]

With the help of the o-profile the surface integral can be elegantly transformed into a o-integral (right side in Eq. 11), but we should keep in mind that the chemical potential of a solute in a solvent is essentially a surface integral of a solvent specific function over the surface of the solute. This fact is important for the analysis of the problem of solubiUty prediction. [Pg.296]

Some agrochemicals bind strongly to the soil component as bound residues, which cannot be extracted without vigorous extraction procedures. In this case, an acidic (e.g., hydrochloric acid, sulfuric acid) or alkaline solution (e.g., sodium hydroxide, potassium hydroxide) can be used as an extraction solvent, and also heating may be effective in improving the extraction of the residues. Analytical procedures after the extraction are the same as above, but a filtration procedure may be troublesome in some of these situations. However, these procedures are rare exceptions or are needed for specific chemicals that are stable under such harsh extraction conditions. [Pg.905]

The liquid-liquid interface is not only a boundary plane dividing two immiscible liquid phases, but also a nanoscaled, very thin liquid layer where properties such as cohesive energy, density, electrical potential, dielectric constant, and viscosity are drastically changed along with the axis from one phase to another. The interfacial region was anticipated to cause various specific chemical phenomena not found in bulk liquid phases. The chemical reactions at liquid-liquid interfaces have traditionally been less understood than those at liquid-solid or gas-liquid interfaces, much less than the bulk phases. These circumstances were mainly due to the lack of experimental methods which could measure the amount of adsorbed chemical species and the rate of chemical reaction at the interface [1,2]. Several experimental methods have recently been invented in the field of solvent extraction [3], which have made a significant breakthrough in the study of interfacial reactions. [Pg.361]

While most polymer/additive analysis procedures are based on solvent or heat extraction, dissolution/precipita-tion, digestions or nondestructive techniques generally suitable for various additive classes and polymer matrices, a few class-selective procedures have been described which are based on specific chemical reactions. These wet chemical techniques are to be considered as isolated cases with great specificity. [Pg.47]

The general or universal effects in intermolecular interactions are determined by the electronic polarizability of solvent (refraction index n0) and the molecular polarity (which results from the reorientation of solvent dipoles in solution) described by dielectric constant z. These parameters describe collective effects in solvate s shell. In contrast, specific interactions are produced by one or few neighboring molecules, and are determined by the specific chemical properties of both the solute and the solvent. Specific effects can be due to hydrogen bonding, preferential solvation, acid-base chemistry, or charge transfer interactions. [Pg.216]

Nanoparticle surface modification is of tremendous importance to prevent nanoparticle aggregation prior to injection, decrease the toxicity, and increase the solubility and the biocompatibility in a living system [20]. Imaging studies in mice clearly show that QD surface coatings alter the disposition and pharmacokinetic properties of the nanoparticles. The key factors in surface modifications include the use of proper solvents and chemicals or biomolecules used for the attachment of the drug, targeting ligands, proteins, peptides, nucleic acids etc. for their site-specific biomedical applications. The functionalized or capped nanoparticles should be preferably dispersible in aqueous media. [Pg.237]

I now shall present a summary of an application of decision analysis to a specific chemical, perchloroethylene (PCE), a widely used dry cleaning solvent (also called tetrachloroethylene). Full details of this application are presented in an EPA report (5). Perchloroethylene was selected for us by the staff of the EPA Office of Toxic Substances as representative of chemicals on which EPA needed to make an unreasonable risk determination under TSCA. Our analysis was carried out as an exercise in methodology development and not to support any specific regulatory activities by EPA concerning perchloroethylene. [Pg.186]

Considerable interest has been shown in the potential of PEN for cosmetic and pharmaceutical containers. Many cosmetics require the increased chemical resistance of PEN. These, generally, are small, amorphous, non-oriented containers that can resist solvent crystallization by the specific chemicals involved. Similar PET containers develop an unacceptable, solvent-induced hazy appearance. PEN has been used successfully to contain liquid anesthetics [28], while PEN blood tubes have also been demonstrated [29],... [Pg.333]

In a kinetic regime system, the kinetics of solvent extraction can be described in terms of chemical reactions occurring in the bulk phases or at the interface. The number of possible mechanisms is, in principle, very large, and only the specific chemical composition of the system determines the controlling mechanism. Nevertheless, some generalizations are possible on considerations based... [Pg.232]


See other pages where Solvents specific chemicals is mentioned: [Pg.413]    [Pg.368]    [Pg.308]    [Pg.1369]    [Pg.125]    [Pg.402]    [Pg.317]    [Pg.502]    [Pg.510]    [Pg.341]    [Pg.218]    [Pg.182]    [Pg.92]    [Pg.92]    [Pg.129]    [Pg.31]    [Pg.97]    [Pg.104]    [Pg.97]    [Pg.77]    [Pg.80]    [Pg.197]    [Pg.59]    [Pg.240]    [Pg.421]    [Pg.307]    [Pg.78]    [Pg.276]    [Pg.139]    [Pg.594]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Chemical specificity

Chemicals specifications

Solvents specification

Specific solvents

© 2024 chempedia.info