Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvents diastereoselectivity

Diastereoselective Hydrogenation since -OH directs the H2, there is a possibility for control of stereochemistry - sensitive to H2 pressure catalyst cone, substrate cone, solvent. [Pg.33]

Dramatic rate accelerations of [4 + 2]cycloadditions were observed in an inert, extremely polar solvent, namely in5 M solutions oflithium perchlorate in diethyl ether(s 532 g LiC104 per litre ). Diels-Alder additions requiring several days, 10—20 kbar of pressure, and/ or elevated temperatures in apolar solvents are achieved in high yields in some hours at ambient pressure and temperature in this solvent (P.A. Grieco, 1990). Also several other reactions, e.g, allylic rearrangements and Michael additions, can be drastically accelerated by this magic solvent. The diastereoselectivities of the reactions in apolar solvents and in LiClO EtjO are often different or even complementary and become thus steerable. [Pg.86]

The validity of the model was demonstrated by reacting 35 under the same reaction conditions as expected, only one diastereoisomer 41 was formed, the structure of which was confirmed by X-ray analysis. When the vinylation was carried out on the isothiazolinone 42 followed by oxidation to 40, the dimeric compound 43 was obtained, showing that the endo-anti transition state is the preferred one. To confirm the result, the vinyl derivative 42 was oxidized and the intermediate 40 trapped in situ with N-phenylmaleimide. The reaction appeared to be completely diastereoselective and a single diastereomer endo-anti 44 was obtained. In addition, calculations modelling the reactivity of the dienes indicated that the stereochemistry of the cycloaddition may be altered by variation of the reaction solvent. [Pg.76]

McCluskey et al. have also used [BMIM][BF4] as a solvent for the allylation of aldehydes and Weinreb amides [56]. Similar diastereoselectivities and similar or slightly lower yields were obtained in this ionic liquid, compared with reactions carried... [Pg.187]

The equatorial selectivity observed with organolithium reagents is enhanced in diethyl ether as the reaction solvent by the addition of lithium perchlorate (Table l)12. I3C-NMR studies47 indicate that the formation of a complex between lithium perchlorate and the carbonyl group, which also leads to a dramatic enhancement of the rate of the addition reaction, accounts for the increased diastereoselectivity. [Pg.9]

In addition to the boron trifluoride-diethyl ether complex, chlorotrimcthylsilanc also shows a rate accelerating effect on cuprate addition reactions this effect emerges only if tetrahydrofuran is used as the reaction solvent. No significant difference in rate and diastereoselectivity is observed in diethyl ether as reaction solvent when addition of the cuprate, prepared from butyllithium and copper(I) bromide-dimethylsulfide complex, is performed in the presence or absence of chlorotrimethylsilane17. If, however, the reaction is performed in tetrahydrofuran, the reaction rate is accelerated in the presence of chlorotrimethylsilane and the diastereofacial selectivity increases to a ratio of 88 12 17. In contrast to the reaction in diethyl ether, the O-silylated product is predominantly formed in tetrahydrofuran. The alcohol product is only formed to a low extent and showed a diastereomeric ratio of 55 45, which is similar to the result obtained in the absence of chlorotrimethylsilane. This discrepancy indicates that the selective pathway leading to the O-silylated product is totally different and several times faster than the unselective pathway" which leads to the unsilylated alcohol adduct. A slight further increase in the Cram selectivity was achieved when 18-crown-6 was used in order to increase the steric bulk of the reagent. [Pg.27]

In contrast to the results obtained with the jS-alkoxy-a-alkyl-y-lactol 16 (vide supra), a chelation-directed, anti-Cram selective nucleophilic addition to the a-methyl-y-lactol 1 was not only observed with methyllithium and methylmagnesium bromide but also with (triisopropoxy)methyl-titanium72. In fact, the highest diastereoselectivity (> 98 % de) was observed with the titanium reagent in dichloromethane as reaction solvent. A seven-membered chelate 3 with the a-methyl substituent in a pscudoequatorial position has been postulated in order to explain the stereochemical outcome. [Pg.41]

Methylmagnesium chloride has been added to various d-(4-substituted-phenyl) <5-oxo esters 15 (X = H, Cl 13, F, Cl, Br, OC11,) which provides the diastereomeric -lactones 1642. The electronic properties of the phenyl 4-substituent have no significant influence on the diastereoselectivity. Except for the 4-methoxyphenyl compound, which is unreactive even at 60 °C, a ratio of ca. 40 60 in favor of the anti-Cram product is observed at 60 "C in tetrahydrofuran as reaction solvent. Lowering the reaction temperature to 0 °C slightly increases the anti-Cram selectivity in the case of the 4-fluoro-, 4-chloro-, and 4-bromo-substituted compounds. On the other hand, a complete loss of reactivity is observed with the <5-phenyl- and <5-(4-methylphenyl)-substituted h-oxo esters. [Pg.44]

Addition of alkynes to a-alkoxy aldehydes is most favorably performed with the corresponding zinc reagents (Table 12)46. As with Grignard reagents, the chelation-controlled addition of zinc alkynes proceeds with higher diastereoselectivity when diethyl ether rather than tetrahydrofuran is used as reaction solvent. [Pg.50]

An analogous solvent effect was observed upon treatment of the chiral a-alkoxy aldehyde 11 with 2-lithio-4-methylfuran in the presence of zinc bromide. This highly diastereoselective addition reaction was the key step in a synthesis of the enantiomcrically pure C-10-C-20 fragment of the immunosuppressant KK 506139. [Pg.51]

The nucleophilic addition of Grignard reagents to a-epoxy ketones 44 proceeds with remarkably high diastereoselectivity70. The chelation-controlled reaction products are obtained in ratios >99 1 when tetrahydrofuran or tetrahydrofuran/hexamethylphosphoric triamide is used as reaction solvent. The increased diastereoselectivity in the presence of hexamethylphos-phoric triamide is unusual as it is known from addition reactions to a-alkoxy aldehydes that co-solvents with chelating ability compete with the substrate for the nucleophile counterion, thus reducing the proportion of the chelation-controlled reaction product (vide infra). [Pg.57]

With respect to the nucleophilic addition of organocopper reagents, a sharp contrast between the rigid isopropylidene glyceraldehyde and its open-chained analog, 2,3-bis(benzyloxy)propanal. was observed (compare Tables 15 and 16). With the isopropylidene-protected aldehyde a high syn diastereoselectivity could only be obtained when tetrahydrofuran was used as reaction solvent, and the diastereoselectivity dropped considerably in diethyl ether. In contrast, the latter solvent allows excellent syn selectivities in additions to the dibenzyl-protected glyceraldehyde81. On the other hand, tetrahydrofuran yields better results than diethyl ether in the... [Pg.74]

The second important group of configuralionally stable bis-protected a-amino aldehydes are the V-dibenzvl derivatives 5, easily prepared from amino acids in a three-step procedure65. These aldehydes react with various nucleophiles to normally provide the nonchelation-con-trolled adducts in high diastereoselectivity. This anti selectivity is observed when diethyl ether or telrahydrofuran is used as reaction solvent. Certain Lewis acidic nucleophiles or additives, such as tin(IV) chloride, in dichloromethane as solvent force chelation and therefore provide the. syn-adducts, once again with a high diastereoselectivity. [Pg.92]

The stereoselectivity reverts in favor of the. rpn-isomer when bulky aldehydes such as 2,2-di-methylpropanal are employed8. This unusual feature is attributed to a higher reactivity of the (Z)-isomer in the equilibrating reagents15 or to the competition of the twist-boat transition states8. The diastereoselectivity decreases, when DMF is used as a solvent, or pyridine is added to the THF solution. Presumably, the complexation ability of the chromium reagent towards the aldehyde is decreased by these additives8. [Pg.436]

Much better results are achieved in the addition of butyllithium to oxime ethers 4a, 4b and 4c activated by boron trifluoride-diethyl ether complex (BF3 OEt2) at — 78 °C (above a reaction temperature of — 30 °C complex mixtures of products are obtained) using toluene as the solvent. Furthermore, the stereoselectivity depends on the E/Z ratio of the starting oxime ethers. The reaction appears to be highly stereoselective, with the diastereoselectivity of the... [Pg.728]

For amide enolates (X = NR2), with Z geometry, model transition state D is intrinsically favored, but, again, large X substituents favor the formation of nt/-adducts via C. Factors that influence the diastereoselectivity include the solvent, the enolate counterion and the substituent pattern of enolate and enonc. In some cases either syn- or unh-products are obtained preferentially by varying the nature of the solvent, donor atom (enolate versus thioeno-late), or counterion. Most Michael additions listed in this section have not been examined systematically in terms of diastereoselectivity and coherent transition stale models are currently not available. Similar models to those shown in A-D can be used, however all the previously mentioned factors (among others) may be critical to the stereochemical outcome of the reaction. [Pg.955]

The diastereoselectivity and the stereochemical outcome of the addition of 2,3,4,6-tetrahydro-3, 4-dimethyl-2-phenyl-1,4-oxazepine-5,7-dione, derived from ephedrine and methyl hydrogen malonate, to 1 -nitrocyclohexene was found to be dependent on the nature of the base and the solvent. The highest diastereoselectivity was obtained when potassium /tr/-butoxide in the presence of dicyclohcxyl-18-crown-6 was employed. In the absence of crown ether the diastereoselection was poor and the sense of the stereochemical outcome was reversed26. [Pg.1021]

The reaction of the enamines of cyclohexanones with a,ft-unsaluraled sulfones gives mixtures resulting from attack of the enamine at the a- and /(-carbons of the oc,/ -unsaturated sulfone. The ratio of x- and /1-adducts is dependent upon the reaction solvent, the geometry and structure of the sulfone1 4. The diastereoselectivity of these reactions is also poor. The reaction of lithium enolates of cyclic ketones with ( )-[2-(methylsulfonyl)ethenyl]benzene, however, gives bicyclic alcohols, as single diastereomers, that result from initial -attack on the oc,/ -unsaturated sulfone5. [Pg.1032]

The stereochemical outcome and the diastereoselectivity of the addition of the anion of diethyl propanedioate to a,/ -unsaturated sulfoxides is dependent on the reaction solvent, the metal counterion and the geometry of the a,/ -unsaturated sulfoxide1 - 3. [Pg.1041]

In general, (Z)-[2-(4-methylphenylsulfmyl)ethenyl]benzenes undergo addition with higher diastereoselectivity than their. -counterparts. The stereochemical outcome for ( )-[2-(4-methyl-phenylsulfinyl)ethcnyl]benzene is more sensitive to the metal counterion and reaction solvent1,2. For ( )-[2-(4-methylphenylsulfmyl)ethenyl]benzene a reverse in product diastereoselection is observed when the metal counterion/solvent is changed from Na/ethanol to Li/THF1. [Pg.1041]


See other pages where Solvents diastereoselectivity is mentioned: [Pg.225]    [Pg.225]    [Pg.27]    [Pg.46]    [Pg.111]    [Pg.233]    [Pg.296]    [Pg.196]    [Pg.775]    [Pg.12]    [Pg.24]    [Pg.32]    [Pg.41]    [Pg.44]    [Pg.48]    [Pg.50]    [Pg.55]    [Pg.60]    [Pg.72]    [Pg.75]    [Pg.142]    [Pg.245]    [Pg.452]    [Pg.459]    [Pg.628]    [Pg.719]    [Pg.737]    [Pg.884]    [Pg.996]    [Pg.306]    [Pg.839]    [Pg.840]   
See also in sourсe #XX -- [ Pg.860 ]




SEARCH



Diastereoselective boron ligands, less polar solvents

Diastereoselectivity, solvent effects

© 2024 chempedia.info