Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent intermolecular forces

The conformation of a polymer in solution is the consequence of a competition between solute intra- and intermolecular forces, solvent intramolecular forces, and solute-solvent intermolecular forces. Addition of a good solvent to a dry polymer causes polymer swelling and disaggregation as solvent molecules adsorb to sites which had previously been occupied by polymer intra- and intermolecular interaction. As swelling proceeds, individual chains are brought into bulk solution until an equilibrium solubility is attained. [Pg.321]

Pure solvents Both UV-vis and fluorescent probes, which exhibit solvatochromic shifts, have been used to study clustering. Solvatochromic shifts are caused by the same types of solute-solvent intermolecular forces (i.e. dispersion, induction, and dipole-dipole forces) that influence solubilities, interacting over the same range. Consequently, the values of clustering determined spectroscopically are appreciate for considering the effect of clustering on solubilities. [Pg.59]

Rule If solute-solute and solvent-solvent intermolecular forces (London, dipole, hydrogen-bonding,... [Pg.94]

Solute-Solvent and Solvent-Solvent Intermolecular Forces... [Pg.224]

If solute-solute and solvent-solvent intermolecular forces (London, dipole, hydrogen-bonding, or ionic) are similar, larger solubilities are predicted. Lesser solubilities are expected if these forces are dissimilar. Or, like dissolves like. [Pg.137]

A useful property of liquids is their ability to dissolve gases, other liquids and solids. The solutions produced may be end-products, e.g. carbonated drinks, paints, disinfectants or the process itself may serve a useful function, e.g. pickling of metals, removal of pollutant gas from air by absorption (Chapter 17), leaching of a constituent from bulk solid. Clearly a solution s properties can differ significantly from the individual constituents. Solvents are covalent compounds in which molecules are much closer together than in a gas and the intermolecular forces are therefore relatively strong. When the molecules of a covalent solute are physically and chemically similar to those of a liquid solvent the intermolecular forces of each are the same and the solute and solvent will usually mix readily with each other. The quantity of solute in solvent is often expressed as a concentration, e.g. in grams/litre. [Pg.26]

Insoluble in water but soluble in nonpolar solvents such as CCl4 or benzene. Iodine is typical of most molecular substances it is only slightly soluble in water (0.0013 mol/L at 25°C), much more soluble in benzene (0.48 mol/L). A few molecular substances, including ethyl alcohol, are very soluble in water. As you will see later in this section, such substances have intermolecular forces similar to those in water. [Pg.235]

Polyesters are another important class of polyols. There are many polyester types used, so a generic structure is shown in Scheme 4.4. They are often based on adipic acid and either ethylene glycol (ethylene adipates) or 1,4-butanediol (butylene adipates). Polyesters, because of the polar carbonyl groups, contribute more to intermolecular forces, and physical properties such as tear and impact resistance are often improved by using them. They are also utilized for their solvent and acid resistance and light stability. Relatively poor hydrolytic stability is... [Pg.212]

Polar molecules attract other polar molecules through dipole-dipole intermolecular forces. Polar solutes tend to have higher solubilities in polar solvents than in nonpolar solvents. Which of the following pairs of compounds would be expected to have the higher solubility in hexafluorobenzene, Cf,I... [Pg.255]

The effect of molecular interactions on the distribution coefficient of a solute has already been mentioned in Chapter 1. Molecular interactions are the direct effect of intermolecular forces between the solute and solvent molecules and the nature of these molecular forces will now be discussed in some detail. There are basically four types of molecular forces that can control the distribution coefficient of a solute between two phases. They are chemical forces, ionic forces, polar forces and dispersive forces. Hydrogen bonding is another type of molecular force that has been proposed, but for simplicity in this discussion, hydrogen bonding will be considered as the result of very strong polar forces. These four types of molecular forces that can occur between the solute and the two phases are those that the analyst must modify by choice of the phase system to achieve the necessary separation. Consequently, each type of molecular force enjoins some discussion. [Pg.23]

Where no specific interaction such as hydrogen-bonding can occur between the polymer and the solvent, the intermolecular attraction between the dissimilar molecules is intermediate between the intermolecular forces of the similar species, i.e. [Pg.67]

Network solids such as diamond, graphite, or silica cannot dissolve without breaking covalent chemical bonds. Because intermolecular forces of attraction are always much weaker than covalent bonds, solvent-solute interactions are never strong enough to offset the energy cost of breaking bonds. Covalent solids are insoluble in all solvents. Although they may react with specific liquids or vapors, covalent solids will not dissolve in solvents. [Pg.838]

At the opposite extreme, molecular solids contain individual molecules bound together by various combinations of dispersion forces, dipole forces, and hydrogen bonds. Conforming to like dissolves like, molecular solids dissolve readily in solvents with similar types of intermolecular forces. Nonpolar I2, for instance, is soluble in nonpolar liquids such as carbon tetrachloride (CCI4). Many organic compounds are molecular solids that dissolve in organic liquids such as cyclohexane and acetone. [Pg.838]

The best solvent for a molecular solid Is one whose Intermolecular forces match the forces holding the molecules in the crystal. For a solid held together by dispersion forces, good solvents are nonpolar liquids such as carbon tetrachloride (CCI4) and cyclohexane (Cg H12) For polar solids, a polar solvent such as acetone works well. Example provides some practice in recognizing solubility types. [Pg.839]

As the same types of intermolecular forces are involved, there is no qualitative difference between solute-solvent interactions and the recognition of a compound by a bio (macro) molecular compound. [Pg.10]

In the absence of solvent molecules, the intermolecular forces governing the molecular interachons are essentially of an electrostatic nature and depend on the presence of electrical charges and dipoles in the molecules [3, 4]. [Pg.318]

As the solute descriptors (E, S, A, B and V) represent the solute influence on various solute-solvent phase interachons, the regression coefficients e, s, a, h and V correspond to the complementary effect of the solvent phases on these interactions. As an example, consider the product aA in Eq. (4). Since A is the H-bond acidity of the solute, a is the H-bond basicity of the system. In other words, the intermolecular forces discussed in Sections 12.1.1.2 and 12.1.1.3 are present in all Abraham s log P factorization equations, with the exception of those interactions involving ions. This is the reason why Abraham s equahons are valid for neutral species only. [Pg.323]

Lipophilicity is a molecular property expressing the relative affinity of solutes for an aqueous phase and an organic, water-immiscible solvent. As such, lipophilicity encodes most of the intermolecular forces that can take place between a solute and a solvent, and represents the affinity of a molecule for a lipophilic environment. This parameter is commonly measured by its distribution behavior in a biphasic system, described by the partition coefficient of the species X, P. Thermodynamically, is defined as a constant relating the activity of a solute in two immiscible phases at equilibrium [111,112]. By convention, P is given with the organic phase as numerator, so that a positive value for log P reflects a preference for the lipid phase ... [Pg.730]

The HcReynolds abroach, which was based on earlier theoretical considerations proposed by Rohrschneider, is formulated on the assumption that intermolecular forces are additive and their Individual contributions to retention can be evaluated from differences between the retention index values for a series of test solutes measured on the liquid phase to be characterized and squalane at a fixed temperature of 120 C. The test solutes. Table 2.12, were selected to express dominant Intermolecular interactions. HcReynolds suggested that ten solutes were needed for this purpose. This included the original five test solutes proposed by Rohrschneider or higher molecular weight homologs of those test solutes to improve the accuracy of the retention index measurements. The number of test solutes required to adequately characterize the solvent properties of a stationary phase has remained controversial but in conventional practice the first five solutes in Table 2.12, identified by symbols x through s have been the most widely used [6). It was further assumed that for each type of intermolecular interaction, the interaction energy is proportional to a value a, b, c, d, or e, etc., characteristic of each test solute and proportional to its susceptibility for a particular interaction, and to a value x, X, Z, U, s, etc., characteristic of the capacity of the liquid phase... [Pg.99]

Solvent selectivity is a measure of the relative capacity of a solvent to enter into specific solute-solvent interactions, characterized as dispersion, induction, orientation and coaplexation interactions, unfortunately, fundamental aiq>roaches have not advanced to the point where an exact model can be put forward to describe the principal intermolecular forces between complex molecules. Chromatograidters, therefore, have come to rely on empirical models to estimate the solvent selectivity of stationary phases. The Rohrschneider/McReynolds system of phase constants [6,15,318,327,328,380,397,401-403], solubility... [Pg.617]

Hybrid MPC-MD schemes may be constructed where the mesoscopic dynamics of the bath is coupled to the molecular dynamics of solute species without introducing explicit solute-bath intermolecular forces. In such a hybrid scheme, between multiparticle collision events at times x, solute particles propagate by Newton s equations of motion in the absence of solvent forces. In order to couple solute and bath particles, the solute particles are included in the multiparticle collision step [40]. The above equations describe the dynamics provided the interaction potential is replaced by Vj(rJVs) and interactions between solute and bath particles are neglected. This type of hybrid MD-MPC dynamics also satisfies the conservation laws and preserves phase space volumes. Since bath particles can penetrate solute particles, specific structural solute-bath effects cannot be treated by this rule. However, simulations may be more efficient since the solute-solvent forces do not have to be computed. [Pg.112]

It has been estimated (4) that in most common solvents at room temperature two reactant molecules within a cage of solvent molecules will collide from 10 to a 1000 times before they separate. The number of collisions per encounter will reflect variations in solvent viscosity, molecular separation distances, and the strength of the pertinent intermolecular forces. High viscosities, high liquid densities, and low temperatures favor many collisions per encounter. [Pg.217]

To have an ideal solution, the solvent-solvent, solute-solute and solvent-solute intermolecular forces should be as nearly identical as possible. Solution (c) consisting of CH4( ) dissolved in CH3CH3( ) would be the most ideal. [Pg.232]


See other pages where Solvent intermolecular forces is mentioned: [Pg.807]    [Pg.807]    [Pg.63]    [Pg.6]    [Pg.247]    [Pg.93]    [Pg.44]    [Pg.807]    [Pg.807]    [Pg.63]    [Pg.6]    [Pg.247]    [Pg.93]    [Pg.44]    [Pg.1047]    [Pg.1103]    [Pg.297]    [Pg.86]    [Pg.149]    [Pg.220]    [Pg.915]    [Pg.21]    [Pg.1047]    [Pg.102]    [Pg.577]    [Pg.26]    [Pg.112]    [Pg.162]    [Pg.90]    [Pg.215]    [Pg.204]    [Pg.123]   
See also in sourсe #XX -- [ Pg.808 ]




SEARCH



Solvent forces

Solvent intermolecular forces acting

© 2024 chempedia.info