Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent by solvation

Although solvents may be classified as donor solvents (Lewis bases) and acceptor solvents (Lewis acids), most of the more widely used nonaqueous solvents are donor solvents. Some acceptor solvents, such as S02, BrF3, AsC13, or the liquid hydrogen halides, have proved to be useful in coordination chemistry.13"16 Ionization is promoted in a donor solvent by solvation of cations and in an acceptor solvent by solvation of anions. For example, arsenic(m) iodide is ionized in a donor solvent D according to the reaction... [Pg.303]

Structural investigation of the pyridones indicates that the keto form predominates in the solid phase, and the hydroxy form in the gaseous state. The keto form is also favoured in most solvents by solvation, except in petroleum ether at high dilution. [Pg.310]

Phase transfer catalysis succeeds for two reasons First it provides a mechanism for introducing an anion into the medium that contains the reactive substrate More important the anion is introduced m a weakly solvated highly reactive state You ve already seen phase transfer catalysis m another form m Section 16 4 where the metal complexmg properties of crown ethers were described Crown ethers permit metal salts to dissolve m nonpolar solvents by surrounding the cation with a lipophilic cloak leav mg the anion free to react without the encumbrance of strong solvation forces... [Pg.926]

In continuum boundary conditions the protein or other macromolecule is treated as a macroscopic body surrounded by a featureless continuum representing the solvent. The internal forces of the protein are described by using the standard force field including the Coulombic interactions in Eq. (6), whereas the forces due to the presence of the continuum solvent are described by solvation tenns derived from macroscopic electrostatics and fluid dynamics. [Pg.98]

Reactant structure will also influence the degree of nucleophilic solvent participation. Solvation is minimized by steric hindrance. The 2-adamantyl system is regarded as being a... [Pg.275]

Z7. The cotr arison of activation parameters for reactions in two different solvents requires consideration of differences in solvation of both the reactants and the transition states. This can be done using a potential energy diagram such as that illustrated below, where A and B refer to two different solvents. By thermodynamic methods, it is possible to establish values which correspond to the enthalpy... [Pg.349]

Other measures of nucleophilicity have been proposed. Brauman et al. studied Sn2 reactions in the gas phase and applied Marcus theory to obtain the intrinsic barriers of identity reactions. These quantities were interpreted as intrinsic nucleo-philicities. Streitwieser has shown that the reactivity of anionic nucleophiles toward methyl iodide in dimethylformamide (DMF) is correlated with the overall heat of reaction in the gas phase he concludes that bond strength and electron affinity are the important factors controlling nucleophilicity. The dominant role of the solvent in controlling nucleophilicity was shown by Parker, who found solvent effects on nucleophilic reactivity of many orders of magnitude. For example, most anions are more nucleophilic in DMF than in methanol by factors as large as 10, because they are less effectively shielded by solvation in the aprotic solvent. Liotta et al. have measured rates of substitution by anionic nucleophiles in acetonitrile solution containing a crown ether, which forms an inclusion complex with the cation (K ) of the nucleophile. These rates correlate with gas phase rates of the same nucleophiles, which, in this crown ether-acetonitrile system, are considered to be naked anions. The solvation of anionic nucleophiles is treated in Section 8.3. [Pg.360]

Pertiaps the most obvious experiment is to compare the rate of a reaction in the presence of a solvent and in the absence of the solvent (i.e., in the gas phase). This has long been possible for reactions proceeding homolytically, in which little charge separation occurs in the transition state for such reactions the rates in the gas phase and in the solution phase are similar. Very recently it has become possible to examine polar reactions in the gas phase, and the outcome is greatly different, with the gas-phase reactivity being as much as 10 greater than the reactivity in polar solvents. This reduced reactivity in solvents is ascribed to inhibition by solvation in such reactions the role of the solvent clearly overwhelms the intrinsic reactivity of the reactants. Gas-phase kinetic studies are a powerful means for interpreting the reaction coordinate at a molecular level. [Pg.385]

The central role of the concept of polarity in chemistry arises from the electrical nature of matter. In the context of solution chemistry, solvent polarity is the ability of a solvent to stabilize (by solvation) charges or dipoles. " We have already seen that the physical quantities e (dielectric constant) and p (dipole moment) are quantitative measures of properties that must be related to the qualitative concept of... [Pg.399]

Protic solvents, such as methanol and ethanol, slow down SN2 reactions by solvation of the reactant nucleophile. The solvent molecules hydrogen bond to the nucleophile and form a "cage" around it, thereby lowering its energy and reactivity. [Pg.370]

The properties of a solvent that contribute to its ability to stabilize ions by solvation are related to the solvent s polarity. SN1 reactions take place much more rapidly in strongly polar solvents, such as water and methanol, than in less polar solvents, such as ether and chloroform. In the reaction of 2-chloro-2-methylpropane, for example, a rate increase of 100,000 is observed on going from ethanol (less polar) to water (more polar). The rate... [Pg.379]

It should be emphasized again that both the SN1 and the 5 2 reaction show solvent effects but that they do so for different reasons. SN2 reactions are disfavored in protic solvents because the ground-state energy oi the nucleophile is lowered by solvation. S l reactions are favored in protic solvents because the transition-state energy leading to carbocation intermediate is lowered by solvation. [Pg.380]

This dissolution process takes place in many solvents to an extent governed by Eq. (3). Solvated electrons can be formed in all solvents by many means. Their kinetics is best studied with the use of pulse radiolysis. [Pg.420]

The first step is a slow ionization of the substrate and is the rate-determining step. The second is a rapid reaction between the intermediate carbocation and the nucleophile. The ionization is always assisted by the solvent, since the energy necessary to break the bond is largely recovered by solvation of R" " and of X. For example, the ionization of f-BuCl to f-Bu" and Cl" in the gas phase without a solvent requires ISOkcalmol" (630kJmol" ). In the absence of a solvent such a process simply would not take place, except at very high temperatures. In water, this... [Pg.393]

This is called the SrnI mechanism," and many other examples are known (see 13-3, 13-4,13-6,13-12). The lUPAC designation is T+Dn+An." Note that the last step of the mechanism produces ArT radical ions, so the process is a chain mechanism (see p. 895)." An electron donor is required to initiate the reaction. In the case above it was solvated electrons from KNH2 in NH3. Evidence was that the addition of potassium metal (a good producer of solvated electrons in ammonia) completely suppressed the cine substitution. Further evidence for the SrnI mechanism was that addition of radical scavengers (which would suppress a free-radical mechanism) led to 8 9 ratios much closer to 1.46 1. Numerous other observations of SrnI mechanisms that were stimulated by solvated electrons and inhibited by radical scavengers have also been recorded." Further evidence for the SrnI mechanism in the case above was that some 1,2,4-trimethylbenzene was found among the products. This could easily be formed by abstraction by Ar- of Ft from the solvent NH3. Besides initiation by solvated electrons," " SrnI reactions have been initiated photochemically," electrochemically," and even thermally." ... [Pg.856]

The rate constants in organic reaction in a solvent generally reflect the solvent effect. Various empirical measures of the solvent effect have been proposed and correlated with the reaction rate constant [5]. Of these, some measures have a linear relation to the solubility parameter of the solvent. The logarithms of kj and k2/ki were plotted against the solubility parameter of toluene, NMP and DMSO[6] in Fig. 2. As shown in Fig.2, the plots satisfied the linear relationship. The solvent polarity is increased by the increase of solubility parameter of the solvent. It may be assumed that increase of unstability and solvation of Ci due to the increase of solvent polarity make the dissociation reaction of Ci and the reaction between Ci and COisuch as SNi by solvation[7] easier, respectively, and then, k2/ki and ks increases as increasing the solubility parameter as shown in Fig. 2. [Pg.347]

The reliability of the experimental A / MX) values was checked for systems containing nitrobenzene, nitromethane, and 1,2-dichlo-roethane as organic solvent by comparing the differences in these values for various pairs of salts with the differences in the Galvani (i.e.,distribution) potemtials, A cp MX) for the same pairs. The differences should be the same. The A cp or Afip data can be used to estimate ion solvation energies in a water-saturated solvent. ... [Pg.35]

In order to obtain the ion concentrations in the pure solvent, we can consider the equilibrium constant K w of the overall reaction 4.3, as separation step 4.1 is followed almost instantaneously by solvation step 4.2, and so... [Pg.250]

Three types of methods are used to study solvation in molecular solvents. These are primarily the methods commonly used in studying the structures of molecules. However, optical spectroscopy (IR and Raman) yields results that are difficult to interpret from the point of view of solvation and are thus not often used to measure solvation numbers. NMR is more successful, as the chemical shifts are chiefly affected by solvation. Measurement of solvation-dependent kinetic quantities is often used (<electrolytic mobility, diffusion coefficients, etc). These methods supply data on the region in the immediate vicinity of the ion, i.e. the primary solvation sphere, closely connected to the ion and moving together with it. By means of the third type of methods some static quantities entropy and compressibility as well as some non-thermodynamic quantities such as the dielectric constant) are measured. These methods also pertain to the secondary solvation-sphere, in which the solvent structure is affected by the presence of ions, but the... [Pg.32]

When the gas-phase reactions, such as the relative acidities or basicities were compared with their counterparts in solution (in a solvent such as water) it was generally found16,17 that the energetics in the solvent were strongly affected by solvation effects and particularly the solvation of the ionic reactants. Relationships between the gas-phase and solution-phase reactions and the solvation energies of the reactants are generally obtained through thermodynamic cycles. From the cycle,... [Pg.258]

Phenolic compounds may enhance the rate of decomposition of aromatic ether, because the phenoxy radical may be stabilized by solvation (18) or hydrogen bonding (19) with phenolic compounds and may result in the subsequent hydrogen transfer reaction from hydrogen donating solvent or phenols (20). [Pg.292]

Molecules of the protic solvent, water, solvate a halide ion by forming hydrogen bonds to it. [Pg.257]

Mooiman, M. B. Miller, J. D. The chemistry of gold solvent extraction from alkaline cyanide solution by solvating extractants. Hydrometallurgy 1991, 27, 29-46. [Pg.806]

Compared with this, the high solvent power for many compounds and gases, in some cases boosted by solvate or hydrate formation or by H-bonding, facilitates reactions in the two-... [Pg.109]


See other pages where Solvent by solvation is mentioned: [Pg.322]    [Pg.543]    [Pg.251]    [Pg.1177]    [Pg.322]    [Pg.543]    [Pg.251]    [Pg.1177]    [Pg.359]    [Pg.816]    [Pg.85]    [Pg.244]    [Pg.118]    [Pg.342]    [Pg.173]    [Pg.714]    [Pg.724]    [Pg.47]    [Pg.124]    [Pg.125]    [Pg.161]    [Pg.63]    [Pg.32]    [Pg.914]    [Pg.282]    [Pg.203]    [Pg.252]    [Pg.34]    [Pg.210]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



By solvent

Solvation/solvents

Solvent solvating

© 2024 chempedia.info