Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution processing solvents properties

Several patents describe solvent-free bulk-phase halogenation (67—69). Dry soHd butyl mbber is fed into a specially designed extmder reactor and contacted with chlorine or bromine vapor. The by-product HCl or HBr ate vented directly without a separate neutralization step. Halogenated butyl mbbers produced are essentially comparable in composition and properties to commercial products made by the solution process. [Pg.483]

A useful property of liquids is their ability to dissolve gases, other liquids and solids. The solutions produced may be end-products, e.g. carbonated drinks, paints, disinfectants or the process itself may serve a useful function, e.g. pickling of metals, removal of pollutant gas from air by absorption (Chapter 17), leaching of a constituent from bulk solid. Clearly a solution s properties can differ significantly from the individual constituents. Solvents are covalent compounds in which molecules are much closer together than in a gas and the intermolecular forces are therefore relatively strong. When the molecules of a covalent solute are physically and chemically similar to those of a liquid solvent the intermolecular forces of each are the same and the solute and solvent will usually mix readily with each other. The quantity of solute in solvent is often expressed as a concentration, e.g. in grams/litre. [Pg.26]

The interactions between solutes and solvents are noncovalent in nature (barring the occurrence of chemical reactions), and therefore fall into the same category as those that govern molecular recognition processes, the formation and properties of liquids and solids, physical adsorption, etc. Hydrogen bonding, in its many manifestations, is a particularly prominent and important example. [Pg.21]

It has also been shown [254] that a commercial petroleum sulfonate surfactant which consists of a diverse admixture of monomers does not exhibit behavior typically associated with micelle formation (i.e., a sharp inflection of solvent properties as the concentration of surfactant reaches CMC). These surfactants exhibit gradual change in solvent behavior with added surfactant. This gradual solubility enhancement indicates that micelle formation is a gradual process instead of a single event (i. e., CMC does not exist as a unique point, rather it is a continuous function of molecular properties). This type of surfactant can represent humic material in water, and may indicate that DHS form molecular aggregates in solution, which comprise an important third phase in the aqueous environment. This phase can affect an increase in the apparent solubility of very hydrophobic chemicals. [Pg.154]

Titrations in non-aqueous solvents have been traditionally an important tool for the accurate determination of various pharmaceuticals, some acids in foods, use of some acids or bases in detergents, cosmetics and textile auxiharies, in the analysis of industrial process streams, the analysis of polymers [1-7]. The determination of the pK or pK values of organic compoimds with acidity or basicity constant less than 10 can only be reahsed in non-aqueous media. Although water has excellent solvent properties, it is not suitable for such organic compotmds since the pH jump at the equivalence point in aqueous solution carmot be evalrrated with reasonable accuracy, with this resrrlt, the end point carmot be found. Moreover, most of this compotmds ate not soluble in water. For these reasons, titration in non-aqueous media has recently acqttired great importance. It is now well known that non-aqueous titrations greatly depend on the solvents used [4, 8-13]. [Pg.327]

Surfactant adsorption on solids from aqueous solutions plays a major role in a number of interfacial processes such as enhanced oil recovery, flotation and detergency. The adsorption mechanism in these cases is dependent upon the properties of the solid, solvent as well as the surfactant. While considerable information is available on the effect of solid properties such as surface charge and solubility, solvent properties such as pH and ionic strength (1,2,3), the role of possible structural variations of the surfactant in determining adsorption is not yet fully understood. [Pg.269]

Degraded TBP process solvent is typically cleaned by washing with sodium carbonate or sodium hydroxide solutions, or both. Such washes eliminate retained uranium and plutonium as well as HDBP and H2MBP. Part of the low-molecular-weight neutral molecules such as butanol and nitrobutane, entrained in the aqueous phase, and 90-95% of the fission products ruthenium and zirconium are also removed by the alkaline washes. Alkaline washing is not sufficient, however, to completely restore the interfacial properties of the TBP solvent, because some surfactants still remain in the organic phase. [Pg.523]

Briefly, the Coordination Model attempts to account for the various species that form when solutes dissolve in various solvents. At low concentrations, iron(III) chloride, for example, forms [FeClaS] [FeCl2S4]+, [FeCU]- [FeS5Cl]2+ 2 Cl and [FeSe] + 3 Cl depending on the solvent employed. Basically, we wish to understand what solvent properties govern the extent of anion displacement. The overall process can be represented by a series of steps, each of which is exemplified by the general reaction ... [Pg.75]

For a complete quantitative description of the solvent effects on the properties of the distinct diastereoisomers of dendrimers 5 (G = 1) and 6 (G = 1), a multiparameter treatment was used. The reason for using such a treatment is the observation that solute/solvent interactions, responsible for the solvent influence on a given process—such as equilibria, interconversion rates, spectroscopic absorptions, etc.—are caused by a multitude of nonspecific (ion/dipole, dipole/dipole, dipole/induced dipole, instantaneous dipole/induced dipole) and specific (hydrogen bonding, electron pair donor/acceptor, and chaige transfer interactions) intermolecular forces between the solute and solvent molecules. It is then possible to develop individual empirical parameters for each of these distinct and independent interaction mechanisms and combine them into a multiparameter equation such as Eq. 2, "... [Pg.43]

This book was written to provide readers with some knowledge of electrochemistry in non-aqueous solutions, from its fundamentals to the latest developments, including the current situation concerning hazardous solvents. The book is divided into two parts. Part I (Chapters 1 to 4) contains a discussion of solvent properties and then deals with solvent effects on chemical processes such as ion solvation, ion complexation, electrolyte dissociation, acid-base reactions and redox reactions. Such solvent effects are of fundamental importance in understanding chem-... [Pg.5]

Chemical reactions in solutions are often affected drastically by the solvents used. The main objective of this book is to correlate the properties of solvents and the solvent effects on various chemical processes relevant to electrochemistry. The most important solvent properties in considering solvent effects are the solvent permittivity and the solvent acidity and basicity. If the permittivity of one solvent is high (er>30) and that of the other is low (er<10), the difference in a chemical process... [Pg.24]

This chapter deals with the fundamental aspects of redox reactions in non-aque-ous solutions. In Section 4.1, we discuss solvent effects on the potentials of various types of redox couples and on reaction mechanisms. Solvent effects on redox potentials are important in connection with the electrochemical studies of such basic problems as ion solvation and electronic properties of chemical species. We then consider solvent effects on reaction kinetics, paying attention to the role of dynamical solvent properties in electron transfer processes. In Section 4.2, we deal with the potential windows in various solvents, in order to show the advantages of non-aqueous solvents as media for redox reactions. In Section 4.3, we describe some examples of practical redox titrations in non-aqueous solvents. Because many of the redox reactions are realized as electrode reactions, the subjects covered in this chapter will also appear in Part II in connection with electrochemical measurements. [Pg.86]

In the last two decades, studies on the kinetics of electron transfer (ET) processes have made considerable progress in many chemical and biological fields. Of special interest to us is that the dynamical properties of solvents have remarkable influences on the ET processes that occur either heterogeneously at the electrode or homogeneously in the solution. The theoretical and experimental details of the dynamical solvent effects on ET processes have been reviewed in the literature [6], The following is an outline of the important role of dynamical solvent properties in ET processes. [Pg.97]


See other pages where Solution processing solvents properties is mentioned: [Pg.2]    [Pg.234]    [Pg.510]    [Pg.400]    [Pg.69]    [Pg.95]    [Pg.255]    [Pg.90]    [Pg.476]    [Pg.393]    [Pg.216]    [Pg.2]    [Pg.287]    [Pg.45]    [Pg.101]    [Pg.184]    [Pg.305]    [Pg.305]    [Pg.48]    [Pg.422]    [Pg.55]    [Pg.275]    [Pg.452]    [Pg.45]    [Pg.45]    [Pg.46]    [Pg.69]    [Pg.95]    [Pg.319]    [Pg.60]    [Pg.8]    [Pg.1188]    [Pg.1647]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Processing properties

Properties processes

Solute process

Solute property

Solution processability

Solution processes

Solution processing

Solution properties

Solutions solvents

Solutizer process

Solvent propertie

Solvent properties

Solvents solution properties

© 2024 chempedia.info