Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Soluble three-dimensional

We have focused our work in non-covalent synthesis on two systems self-assembled, two-dimensional monolayers based on ordered structures of alkanethiolates chemisorbed on gold, and soluble three-dimensional aggregates held together by... [Pg.569]

Several research groups have built models using theoretical desaiptors calculated only from the molecular structure. This approach has been proven to be particularly successful for the prediction of solubility without the need for descriptors of experimental data. Thus, it is also suitable for virtual data screening and library design. The descriptors include 2D (two-dimensional, or topological) descriptors, and 3D (three-dimensional, or geometric) descriptors, as well as electronic descriptors. [Pg.497]

CO—C H,—CO—0—CHj—CHOH—CHj—OOC—CgH,—CO— These are comparatively soft materials and they are soluble in a number of organic solvents. Under more drastic conditions (200-220°) and with a larger proportion of phthahc anhydride, the secondary alcohol groups are esterified and the simple chains become cross-hnked three dimensional molecules of much higher molecular weight are formed ... [Pg.1018]

We noted above that the presence of monomer with a functionality greater than 2 results in branched polymer chains. This in turn produces a three-dimensional network of polymer under certain circumstances. The solubility and mechanical behavior of such materials depend critically on whether the extent of polymerization is above or below the threshold for the formation of this network. The threshold is described as the gel point, since the reaction mixture sets up or gels at this point. We have previously introduced the term thermosetting to describe these cross-linked polymeric materials. Because their mechanical properties are largely unaffected by temperature variations-in contrast to thermoplastic materials which become more fluid on heating-step-growth polymers that exceed the gel point are widely used as engineering materials. [Pg.314]

The methodology for preparation of hydrocarbon-soluble, dilithium initiators is generally based on the reaction of an aromatic divinyl precursor with two moles of butyUithium. Unfortunately, because of the tendency of organ olithium chain ends in hydrocarbon solution to associate and form electron-deficient dimeric, tetrameric, or hexameric aggregates (see Table 2) (33,38,44,67), attempts to prepare dilithium initiators in hydrocarbon media have generally resulted in the formation of insoluble, three-dimensionally associated species (34,66,68—72). These precipitates are not effective initiators because of their heterogeneous initiation reactions with monomers which tend to result in broader molecular weight distributions > 1.1)... [Pg.239]

C. M. Hansen, The Three-Dimensional Solubility Parameter and Solvent Diffusion Coefficient, Danish Technical Press, Copenhagen, Denmark, 1967. [Pg.438]

Na[Sb(OH)g], respectively. The latter compound is one of the least soluble sodium salts known and is useful in sodium analysis. Numerous polyantimonate(V) derivatives are prepared by heat treatment of mixtures of antimony trioxide and other metal oxides or carbonates. Of these, K Sb O [12056-59-6] and K Sb O [52015-49-3] have been characterized by x-ray. These consist of three-dimensional networks of SbO in which corners and edges are shared with K" ions located in tunnels through the network (23). Simple species such as SbO and Sb20 2, analogous to orthophosphate and pyrophosphate, apparendy do not exist. [Pg.203]

Fig. 23. The compatibility sphere delined by the three-dimensional solubility parameters . +, the solubility parameter coordinates of a given polymer , coordinates of solvents showing a high degree of compatibility (e.g., full mi.scibility) with the polymer U, solvents showing a lower degree of compatibility. Fig. 23. The compatibility sphere delined by the three-dimensional solubility parameters . +, the solubility parameter coordinates of a given polymer , coordinates of solvents showing a high degree of compatibility (e.g., full mi.scibility) with the polymer U, solvents showing a lower degree of compatibility.
Extensive use of the three-dimensional solubility parameters for predicting adhesion seems not to have been made, although its additional flexibility should make it successful over a wider range of conditions than the single-parameter approach. Some recent studies involving dental adhesion employed the method with success. Asmussen and Uno fl40 successfully correlated the shear bond strength of various dental adhesive resins, characterized in terms of their three-... [Pg.56]

After hardening, UF-resins consist of insoluble, more or less three-dimensional networks and cannot be melted or thermoformed again. At their application stage, UF-resins are still soluble or dispersed in water or are spray dried powders, which in most cases are redissolved and redispersed in water for application. [Pg.1046]

There have been many attempts to divide the overall solubility parameter into components corresponding to the several intermolecular forces. For example, a so-called three-dimensional solubility parameter concept is built on the assumption that the ced is an additive function of contributions from dispersion (d), polar (p), and H-bonding (h) forces. It follows that... [Pg.416]

The present study is conducted under consideration of thus mentioned difficulties. The solubility measurement is applied to the present investigation, selecting the pH range 6 v 12 in which the carbonate concentration can be maintained greater than 5xl0 6 M/l. The carbonate concentration and pH of experimental solutions, both being mutually dependent in a given solution, are taken into account as two variable parameters in the present experiment and hence the final evaluation of formation constants is based on three dimensional functions. For calculation purpose, the hydrolysis constants of Pu(IV) are taken from the literature (18). In order to differentiate the influence of hydrolysis reactions on the carbonate complexation so far as possible, the calculation is based on the solubilities from solutions of carbonate concentration > 10-1 M/l and pH > 8. [Pg.316]

The concepts of interface rheology are derived from the rheology of three-dimensional phases. Characteristic for the interface rheology is the coupling of the motions of an interface with the flow processes in the bulk close to the interface. Thus, in interface rheology the shear and dilatational stresses of the interface are in equilibrium with the corresponding shear stress in the bulk. An important feature is the compressibility of the adsorption layer of an interface in contrast, the flow elements of the bulk are incompressible. As a result, compression or dilatation of the adsorption layer of a soluble surfactant is associated with desorption and adsorption processes by which the interface tends to reinstate the adsorption equilibrium with the bulk phase. [Pg.184]

Mutant YE-2 of Rhizobium meliloti excretes a mixture of soluble polysaccharides that include a complex succinoglycan having a branched octasaccharide repeat as well as a simple galactoglucan (22) having a linear disaccharide repeat.102 In contrast to the case of the succinoglycan, oriented fibers of the potassium salt of 22 have yielded good X-ray data and its three-dimensional structure has been established.39 The polymer forms a two-fold helix of pitch... [Pg.362]

Baekeland had to make important discoveries before he could bridge the gap between the initial concept and final products. In particular, he found that the base-catalysed condensation of phenol and formaldehyde can be carried out in two parts. If the process is carefully controlled, an intermediate product can be isolated, either as a liquid or a solid, depending on the extent of reaction. At this stage, the material consists of essentially linear molecules and is both fusible and soluble in appropriate solvents. When heated under pressure to 150 °C, this intermediate is converted to the hard, infusible solid known as bakelite . This second stage is the one at which the three-dimensional cross-linked network develops. [Pg.14]

A hydrogel is formed by a water-soluble polymer that has been lightly crosslinked. Hydrogels swell as they absorb water but they do not dissolve. The volume expansion is limited by the degree of crosslinking. The minimum number of crosslinks needed to form a three-dimensional matrix is approximately 1.5 crosslinks per chain, and this yields the maximum expansion possible without separation of the chains into a true solution. Thus, a hydrogel may be more than 95% water and, in that sense, has much in common with living soft tissues. [Pg.183]

Proteins may be classified on the basis of the solubility, shape, or function or of the presence of a prosthetic group such as heme. Proteins perform complex physical and catalytic functions by positioning specific chemical groups in a precise three-dimensional arrangement that is both functionally efficient and physically strong. [Pg.39]


See other pages where Soluble three-dimensional is mentioned: [Pg.102]    [Pg.102]    [Pg.217]    [Pg.102]    [Pg.102]    [Pg.217]    [Pg.288]    [Pg.381]    [Pg.548]    [Pg.202]    [Pg.205]    [Pg.489]    [Pg.294]    [Pg.275]    [Pg.70]    [Pg.300]    [Pg.85]    [Pg.55]    [Pg.55]    [Pg.57]    [Pg.68]    [Pg.780]    [Pg.1211]    [Pg.1038]    [Pg.275]    [Pg.29]    [Pg.389]    [Pg.108]    [Pg.15]    [Pg.6]    [Pg.189]    [Pg.450]    [Pg.158]    [Pg.341]    [Pg.112]    [Pg.274]   
See also in sourсe #XX -- [ Pg.14 , Pg.21 , Pg.70 , Pg.144 ]




SEARCH



Hansen Three-Dimensional Solubility Parameter

Hansens Three-Dimensional Solubility Parameter

Solubility three-dimensional descriptors

Three dimensional solubility

Three dimensional solubility

Three dimensional solubility parameter

© 2024 chempedia.info