Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solids salts Metals

The first step in designing a precursor synthesis is to pick precursor molecules that, when combined in organic solvents, yield the bulk crystalline solid. For metals, a usual approach is to react metal salts with reducing agents to produce bulk metals. The main challenge is to find appropriate metal salts that are soluble in an organic phase. [Pg.2901]

For water, organic and water-organic metal salts mixtures the dependence of integral and spectral intensities of coherent and non-coherent scattered radiation on the atomic number (Z), density, oscillator layer thickness, chemical composition, and the conditions of the registering of analytical signals (voltage and tube current, tube anode material, crystal-analyzer) was investigated. The dependence obtained was compared to that for the solid probes (metals, alloys, pressed powder probes). [Pg.444]

In 1826 J. J. Berzelius found that acidification of solutions containing both molybdate and phosphate produced a yellow crystalline precipitate. This was the first example of a heteropolyanion and it actually contains the phos-phomolybdate ion, [PMoi204o] , which can be used in the quantitative estimation of phosphate. Since its discovery a host of other heteropolyanions have been prepared, mostly with molybdenum and tungsten but with more than 50 different heteroatoms, which include many non-metals and most transition metals — often in more than one oxidation state. Unless the heteroatom contributes to the colour, the heteropoly-molybdates and -tungstates are generally of varying shades of yellow. The free acids and the salts of small cations are extremely soluble in water but the salts of large cations such as Cs, Ba" and Pb" are usually insoluble. The solid salts are noticeably more stable thermally than are the salts of isopolyanions. Heteropoly compounds have been applied extensively as catalysts in the petrochemicals industry, as precipitants for numerous dyes with which they form lakes and, in the case of the Mo compounds, as flame retardants. [Pg.1014]

We can control the plutonium oxidation rate by reacting molten ZnCl2 salt with solid plutonium metal. [Pg.422]

Sometimes we have to precipitate one ion of a sparingly soluble salt. For example, heavy metal ions such as lead and mercury can be removed from municipal waste-water by precipitating them as the hydroxides. However, because the ions are in dynamic equilibrium with the solid salt, some heavy metal ions remain in solution. How can we remove more of the ions ... [Pg.588]

The conductivity of solid salts and oxides was first investigated by M. Faraday in 1833. It was not yet known at that time that the nature of conduction in solid salts is different from that in metals. A number of fundamental studies were performed between 1914 and 1927 by Carl Tubandt in Germany and from 1923 onward by Abram Ioffe and co-workers in Russia. These studies demonstrated that a mechanism of ionic migration in the lattice over macroscopic distances is involved. It was shown that during current flow in such a solid electrolyte, electrochemical changes obeying Faraday s laws occur at the metal-electrolyte interface. [Pg.134]

Generally speaking, homogeneous nucleation needs the supersaturation level higher than heterogeneous one. In the system consisting of support solid and metal salt solution, the nucleation occurs on the surfaces of the solid. The selective reductive deposition is performed by the adsorption of metal ion or complexes on the surfaces and hereby the reduction. Namely, the initial adsorption of metal ions or complexes is the key point of this technique. Hence, key points of this method are... [Pg.392]

Even though alkali metal anions may be freely generated in solution, the isolation of solid salts containing such anions is not straightforward. Thus, the disproportionation observed when an alkali metal is dissolved in an amine or ether... [Pg.134]

The "silver mirror test" is used to distinguish an aldehyde from a ketone. Tollen s reagent, Ag(NH3)20H, acts as an oxidizing agent. When it is mixed with an aldehyde, the aldehyde oxidizes to the salt of a carboxylic acid. The silver ions in Tollen s reagent are reduced to silver atoms, and coat the glass of the reaction container with solid silver metal. [Pg.65]

The extractabilities of metal-organic complexes depend on whether inner or outer sphere complexes are formed. Case 1, section 4.2.1, the extraction of ura-nyl nitrate by TBP, is a good example. The free uranyl ion is surrounded by water of hydration, forming U02(H20)f, which from nitric acid solutions can be crystallized out as the salt U02(H20)6 (N03), though it commonly is written U02(N03)2(H20)6. Thus, in solution as well as in the solid salt, the UOf is surrounded by 6 HjO in an inner coordination sphere. In the solid nitrate salt, the distance du.o(nitrate) between the closest oxygen atoms of the nitrate anions, (0)2N0, and the U-atom is longer than the corresponding distance, du-o(water), to the water molecules, OH2, i.e., du.o(nitrate) > 4u.o(water) thus the nitrate anions are in an outer coordination sphere. [Pg.187]

The Other Five Candidates. All the molten salt SBs reviewed above have either a Li anode or a lithium alloy, one in which Li prevails quantitatively. As to the other 5 light metals they are seldom mentioned in the literature as candidates for anodes in these SBs, except Al. In (82) it is stated that molten salt batteries with Ca or Mg anodes yield only a small proportion of their theoretical energy because (a) Ca anodes react chemically with the electrolyte, and (b) both Ca and Mg anodes are passivated at high current drains, becoming coated with resistive films of solid salts. In a melt containing Li salts, Ca replaces Li ions by the displacement reaction Ca + 2LiCl = CaCl2 + 2Li. [Pg.270]

In this profile, the term chlorite will be used to refer to chlorite ion, which is a water-soluble ion. Chlorite ion will combine with metal ions to form solid salts, (e.g., sodium chlorite). In water, sodium chlorite is soluble and will dissolve to form chlorite ions and sodium ions. More than 80% of all chlorite (as sodium chlorite) is used to make chlorine dioxide to disinfect drinking water. Sodium chlorite is also used as a disinfectant to kill germs. [Pg.17]

The metal in trace quantities may be analyzed by furnace or flame AA or by ICP emission or ICP/MS techniques. The sohd or liquid sample is digested with nitric acid and the solution is diluted appropriately and analyzed. The element may also be determined in solid salts or mixtures by various x-ray methods. [Pg.109]

K. Yamazaki K. Kishi, Composite Solid Propellant Containing Preshaped Oxidizer Salt-Metallic Fuel-Burning Rate Controller Particles , USP 3454437 (1969) CA71, 161... [Pg.514]

Scandium complexes with chloride ion in aqueous solution, and there is ion-exchange evidence for anionic species, presumably ScClJ aq, in concentrated hydrochloric acid,119 while values of K = 90 and K2 - 37 for the first two association constants have been reported.1211 Solid salts of the anions ScClt-, St Cll- and ScCl2- have been isolated with alkali metal cations.121,122 It seems likely that both the first two species are octahedral and bridged-octahedral respectively, in line with Cs2NaScCl6 which has an X-ray powder pattern in accord with a face-centred cubic structure.123... [Pg.1067]

Halogen Compounds.—Practically all of the elements unite with chlorine, bromine, and iodine to form the corresponding halogen compounds. With the metals, well-defined solid salts are formed, save in cases in which the metal has a high valence and is a metallo-acid... [Pg.61]

The solubility product is the equilibrium constant for the dissolution of a solid salt into its constituent ions in aqueous solution. The common ion effect is the observation that, if one of the ions of that salt is already present in the solution, the solubility of a salt is decreased. Sometimes, we can selectively precipitate one ion from a solution containing other ions by adding a suitable counterion. At high concentration of ligand, a precipitated metal ion may redissolve by forming soluble complex ions. In a metal-ion complex, the metal is a Lewis acid (electron pair acceptor) and the ligand is a Lewis base (electron pair donor). [Pg.116]

Organic substances such as methane, naphthalene, and sucrose, and inorganic substances such as iodine, sulfur trioxide, carbon dioxide, and ice are molecular solids. Salts such as sodium chloride, potassium nitrate, and magnesium sulfate have ionic bonding structures. All metal elements, such as copper, silver, and iron, have metallic bonds. Examples of covalent network solids are diamond, graphite, and silicon dioxide. [Pg.198]

Products containing the (CHgJgNHl and (CH3)NH3 ions have been prepared by employing the appropriate amine 6 ). These quaternary ammonium salts are air stable, crystalline solids. In metal ammonia solutions, the ammonium salt has been converted to sodium and potassium salts 68 >. [Pg.23]

B. A gas at STP has a normal boiling point under 0 °C. The substance with the lowest boiling point will have the weakest intermolecular attractive forces and will be the most likely gas at STP. F2 has the lowest molecular weight, is not a salt, metal, or covalent network solid, and is non-polar, indicating the weakest intermolecular attractive forces of the four choices. F2 actually is a gas at STP, and the other three are solids. [Pg.276]

The deposition of hydrogen is also prevented by maintaining a high concentration of salt in the electrolyte this facilitates the discharge of alkali metal ions at a lower, i. e. less negative potential. For this reason saturated brine is fed into the electrolyzer and its rate of flow is so adjusted that on leaving the electrolyzer it still has a sufficiently high concentration the depleted brine is then purified, resaturated with solid salt and returned to the process. [Pg.274]


See other pages where Solids salts Metals is mentioned: [Pg.122]    [Pg.1130]    [Pg.102]    [Pg.149]    [Pg.700]    [Pg.135]    [Pg.703]    [Pg.714]    [Pg.256]    [Pg.31]    [Pg.26]    [Pg.301]    [Pg.29]    [Pg.581]    [Pg.146]    [Pg.240]    [Pg.472]    [Pg.879]    [Pg.795]    [Pg.194]    [Pg.714]    [Pg.167]    [Pg.521]    [Pg.235]    [Pg.311]    [Pg.24]    [Pg.162]    [Pg.170]    [Pg.238]   


SEARCH



Lithium solid-electrolyte/metal salt batteries

Metallic solids

© 2024 chempedia.info