Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bulk crystalline

The first step in designing a precursor synthesis is to pick precursor molecules that, when combined in organic solvents, yield the bulk crystalline solid. For metals, a usual approach is to react metal salts with reducing agents to produce bulk metals. The main challenge is to find appropriate metal salts that are soluble in an organic phase. [Pg.2901]

X-ray diffraction XRD was performed to determine the bulk crystalline phases of catalyst. It was conducted using a SIEMENS D-5000 X-ray diffractometer with CuX (k = 1.54439 A). The spectra were scanned at a rate of 2.4 degree/min in the range 20 = 20-80 degrees. [Pg.286]

However, the spreading of a surfactant monolayer from a volatile solvent leaves behind a film that may not be in thermodynamic equilibrium with its bulk crystalline form or the aqueous subphase. It has been proposed that this is a result of the relatively high energy barriers to film collapse or dissolution into the subphase as compared with lowered interfacial free energy when a stable, insoluble surfactant monolayer is formed (Gershfeld, 1976). The rate at which a whole system approaches true equilibrium in such a system is often so slow that the monolayer film can be treated for most purposes as though it were at equilibrium with the subphase. [Pg.52]

The question may then be raised as to whether insoluble monolayers may really be treated in terms of equilibrium thermodynamics. In general, this problem has been approached by considering (i) the equilibrium spreading pressure of the monolayer in the presence of the bulk crystalline surfactant, and (ii) the stability of the monolayer film as spread from solution. These quantities are obtained experimentally and are necessary in any consideration of film thermodynamic properties. In both cases, time is clearly a practical variable. [Pg.52]

The monolayer stability limit is defined as the maximum pressure attainable in a film spread from solution before the monolayer collapses (Gaines, 1966). This limit may in some cases correspond directly to the ESP, suggesting that the mechanism of film collapse is a return to the bulk crystalline state, or may be at surface pressures higher than the ESP if the film is metastable with respect to the bulk phase. In either case, the monolayer stability limit must be known before such properties as work of compression, isothermal compressibility, or monolayer viscosity can be determined. [Pg.54]

In the bulk crystalline phases, large differences exist in the properties of the racemic mixture and the pure enantiomers. X-ray powder diffraction patterns showed that the racemic mixture was a true racemate, and the melting transition points and heats of fusion of the racemate were markedly different from those of the pure enantiomers [which were identical (Arnett and Thompson, 1981)]. [Pg.71]

The instability of these chiral monolayers may be a reflection of the relative stabilities of their bulk crystalline forms. When deposited on a clean water surface at 25°C, neither the racemic nor enantiomeric crystals of the tryptophan, tyrosine, or alanine methyl ester surfactants generate a detectable surface pressure, indicating that the most energetically favorable situation for the interfacial/crystal system is one in which the internal energy of the bulk crystal is lower than that of the film at the air-water interface. Only the racemic form of JV-stearoylserine methyl ester has a detectable equilibrium spreading pressure (2.6 0.3dyncm 1). Conversely, neither of its enantiomeric forms will spread spontaneously from the crystal at this temperature. [Pg.81]

Associations within the bulk crystalline phase. The physical property of enantiomeric solids and their mixtures which is cited most often is melting point. Figure 18 gives the melting point versus composition diagram for mixtures of S( + )- and R( — )-SSME. The solid-liquid coexistence line of... [Pg.81]

C temperature range. However, when spread from their bulk crystalline phases, the equilibrium spreading pressures of these films are clearly dependent on stereochemistry (Fig. 23) across the same temperature range. The conclusion that can be reached from these preliminary data is... [Pg.91]

Table 12 shows the equilibrium spreading pressures of each diacid. It is immediately apparent that for three of the diastereomeric pairs there are statistically significant differences. These distinctions relate stereochemical preferences in the spontaneous spreading of (+)- versus meso-monolayers in equilibrium with their respective crystalline phases. However, there appears to be no discernible trend in either the ( )- or meso-ESPs as a function of carbonyl position despite clear trends seen in their monolayer properties in the absence of any bulk crystalline phase. [Pg.118]

Supercooling has been observed in an extreme form in molten ibuprofen if the molten solid is allowed to cool from the melting point to room temperature without vibration in a smooth-lined container [48]. For instance, undisturbed rac-ibuprofen can exist as an oil phase for several hours to a few days. If disturbed, however, an exothermic recrystallization proceeds and bulk crystalline material rapidly grows vertically out of the oil phase so energetically that the system emits an audible cracking sound. [Pg.99]

Because of its indirect bandgap, bulk crystalline silicon shows only a very weak PL signal at 1100 nm, as shown for RT and 77 K in Fig. 7.9. Therefore optoelectronic applications of bulk silicon are so far limited to devices that convert light to electricity, such as solar cells or photodetectors. The observation of red PL from PS layers at room temperature in 1990 [Cal] initiated vigorous research in this field, because efficient EL, the conversion of electricity into light, seemed to be within reach. Soon it was found that in addition to the red band, luminescence in the IR as well as in the blue-green region can be observed from PS. [Pg.138]

The lattice parameters were found to scale linearly with the relative Au/Pt content. In other words, they follow a Vegard s type law that is frequently observed with binary metallic alloys. This is an important finding because it shows that the correlation between the phase property and the bimetallic composition for nanoscale materials is different from their bulk counterparts. Bulk Au-Pt metals show a miscibility gap and the linear correlation between the lattice parameter and the composition breaks in a very wide composition range extending from 10 to 80% Au. Within the miscibility gap, the lattice parameters corresponding to bulk crystalline Au-Pt samples are independent of the composition. [Pg.296]

Minerals are generally regarded as crystalline phases formed as a result of geological processes. As a (bulk) crystalline phase in the classical sense, a mineral must satisfy the conditions of long-range structural order in three dimensions, and homogeneity with respect to its macroscopic physical and chemical properties. [Pg.422]

The porous Ge mesostructures exhibit energy band gaps that are much wider than that of bulk crystalline or amorphous Ge. In Fig. 5, the optical absorption... [Pg.140]

Microcrystals exhibit properties distinctly different from those of bulk solids. The fractional change in lattice spacing has been found to increase with decreasing particle size in FejOj. Magnetic hyperfine fields in a-FejOj and FejO are lower in the microcrystalline phase compared to those of the bulk crystalline phases. The tetra-gonality (i.e. the departure of the axial ratio from unity) of ferroelectric BaTiOj decreases with decrease in particle size in PZT, the low-frequency dielectric constant decreases and the Curie temperature increases with decreasing particle size. The small particle size in microcrystals cannot apparently sustain low-frequency lattice vibrations. [Pg.149]

Bulk crystalline radical ion salts and electron donor-electron acceptor charge transfer complexes have been shown to have room temperature d.c. conductivities up to 500 Scm-1 [457, 720, 721]. Tetrathiafiilvalene (TTF), tetraselenoful-valene (TST), and bis-ethyldithiotetrathiafulvalene (BEDT-TTF) have been the most commonly used electron donors, while tetracyano p-quinodimethane (TCNQ) and nickel 4,5-dimercapto-l,3-dithiol-2-thione Ni(dmit)2 have been the most commonly utilized electron acceptors (see Table 8). Metallic behavior in charge transfer complexes is believed to originate in the facile electron movements in the partially filled bands and in the interaction of the electrons with the vibrations of the atomic lattice (phonons). Lowering the temperature causes fewer lattice vibrations and increases the intermolecular orbital overlap and, hence, the conductivity. The good correlation obtained between the position of the maximum of the charge transfer absorption band (proportional to... [Pg.160]

Bulk crystalline or amorphous solid-state materials whose conductivity is intermediate between metals and insulators and whose resistance decreases with increasing temperature. The valance band of an undoped semiconductor is completely filled, whereas its conduction band is empty. The energy difference between the valence and conduction bands (the band-gap) defines a semiconductor (see Fig. 95). [Pg.208]

Microscopic and mechanistic aspects of diffusion are treated in Chapters 7-10. An expression for the basic jump rate of an atom (or molecule) in a condensed system is obtained and various aspects of the displacements of migrating particles are described (Chapter 7). Discussions are then given of atomistic models for diffusivities and diffusion in bulk crystalline materials (Chapter 8), along line and planar imperfections in crystalline materials (Chapter 9), and in bulk noncrystalline materials (Chapter 10). [Pg.23]

While it is true that high population densities of these ultra-small QD s can be assembled in zeolite cavities, the QD may lose the properties of bulk crystallinity with respect to the parent bulk semiconductor. Furthermore the extent of lattice periodicity within a QD is likely to be too small for the EMA to be valid. Indeed a pivotal, and still unanswered question, concerns precisely the... [Pg.575]

Transition metal acetylides combine the properties of acetylenes with those of the transition metals, offering flexibility in the tuning of structural and electronic properties of both the organic and inorganic constituents. Optimization of the molecular and bulk crystalline properties is envisaged to lead to a new class of useful nonlinear optical materials. [Pg.603]


See other pages where Bulk crystalline is mentioned: [Pg.284]    [Pg.2397]    [Pg.2943]    [Pg.314]    [Pg.470]    [Pg.6]    [Pg.238]    [Pg.167]    [Pg.81]    [Pg.322]    [Pg.323]    [Pg.541]    [Pg.128]    [Pg.81]    [Pg.98]    [Pg.61]    [Pg.3]    [Pg.303]    [Pg.133]    [Pg.370]    [Pg.120]    [Pg.122]    [Pg.569]    [Pg.54]    [Pg.470]    [Pg.468]    [Pg.34]    [Pg.22]    [Pg.133]    [Pg.314]   
See also in sourсe #XX -- [ Pg.171 , Pg.172 ]




SEARCH



Bulk amorphous + crystalline

© 2024 chempedia.info