Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solids interface effects

Surface relaxation is a fluid-solid interface effect. The bonding of fluid molecules at the surface originates a faster relaxation of the protons, thus a shorter relaxation time compared with bulk relaxation. This effect is controlled by the specific internal surface Spor and the surface relaxivity... [Pg.94]

Clearly, it is important that there be a large contact angle at the solid particle-solution-air interface. Some minerals, such as graphite and sulfur, are naturally hydrophobic, but even with these it has been advantageous to add materials to the system that will adsorb to give a hydrophobic film on the solid surface. (Effects can be complicated—sulfur notability oscillates with the number of preadsoibed monolayers of hydrocarbons such as n-heptane [76].) The use of surface modifiers or collectors is, of course, essential in the case of naturally hydrophilic minerals such as silica. [Pg.476]

This interface is critically important in many applications, as well as in biological systems. For example, the movement of pollutants tln-ough the enviromnent involves a series of chemical reactions of aqueous groundwater solutions with mineral surfaces. Although the liquid-solid interface has been studied for many years, it is only recently that the tools have been developed for interrogating this interface at the atomic level. This interface is particularly complex, as the interactions of ions dissolved in solution with a surface are affected not only by the surface structure, but also by the solution chemistry and by the effects of the electrical double layer [31]. It has been found, for example, that some surface reconstructions present in UHV persist under solution, while others do not. [Pg.314]

There have been many modifications of this idealized model to account for variables such as the freezing rate and the degree of mix-ingin the liquid phase. For example, Burton et al. [J. Chem. Phy.s., 21, 1987 (1953)] reasoned that the solid rejects solute faster than it can diffuse into the bulk liquid. They proposed that the effect of the freezing rate and stirring could be explained hy the diffusion of solute through a stagnant film next to the solid interface. Their theoiy resulted in an expression for an effective distribution coefficient k f which could be used in Eq. (22-2) instead of k. [Pg.1991]

Surface SHG [4.307] produces frequency-doubled radiation from a single pulsed laser beam. Intensity, polarization dependence, and rotational anisotropy of the SHG provide information about the surface concentration and orientation of adsorbed molecules and on the symmetry of surface structures. SHG has been successfully used for analysis of adsorption kinetics and ordering effects at surfaces and interfaces, reconstruction of solid surfaces and other surface phase transitions, and potential-induced phenomena at electrode surfaces. For example, orientation measurements were used to probe the intermolecular structure at air-methanol, air-water, and alkane-water interfaces and within mono- and multilayer molecular films. Time-resolved investigations have revealed the orientational dynamics at liquid-liquid, liquid-solid, liquid-air, and air-solid interfaces [4.307]. [Pg.264]

Figure 5.29. Bode (a) and corresponding Nyquist plot (b) of the circuit shown in inset which is frequently used to model a metal/solid electrolyte interface. Effect (c) of capacitance C2 on the Nyquist plot at fixed R0, R( and R2. Figure 5.29. Bode (a) and corresponding Nyquist plot (b) of the circuit shown in inset which is frequently used to model a metal/solid electrolyte interface. Effect (c) of capacitance C2 on the Nyquist plot at fixed R0, R( and R2.
Baudry, j., Chariaix, E., Tonck, A., Mazuyer, D., Experimental evidence for a large slip effect at a nonwetting fluid-solid interface, Langmuir 17 (2001) 5232-5236. [Pg.250]

Hydropolymer gel has been considered as a possible candidate for an artificial articular cartilage in artificial joints because it exhibits very low friction when it is in contact with a solid. The origin of such low friction is considered to be associated with the water absorbed in the gel [83-86], some of which is squeezed out from the gel under the load and serves as a lubricant layer between the gel and solid surface, resulting in hydrodynamic lubrication [87, 88]. Although the structural information about the interfacial water is important to understand the role of water for the low frictional properties of hydrogel in contact with a solid and the molecular structure of lubricants other than water at solid/solid interfaces have been investigated theoretically [89-91] and experimentally [92-98], no experimental investigations on water structure at gel/solid interfaces have been carried out due to the lack of an effective experimental technique. [Pg.89]

When any materials interact with their environment through solid/gas, solid/liquid, and solid/solid interfaces, the nanometer scale surface created can easily be modified to perform certain functions. The modifications are usually only effective in the few nanometer deep surface layers. This chapter highlights the development of new model nanostructured materials with functionalized interfaces to... [Pg.77]

The second part of the book deals with the use of above method in physical and chemical studies. In addition to illustration load, this part of the book has a separate scientific value. The matter is that as examples the book provides a detailed description of the studies of sudi highly interesting processes as adsorption, catalysis, pyrolysis, photolysis, radiolysis, spill-over effect as well as gives an insight to such problems as behavior of free radicals at phase interface, interaction of electron-excited particles with the surface of solid body, effect of restructuring of the surface of adsorbent on development of different heterogeneous processes. [Pg.1]

The effects of transfer of atoms by tunneling may play an essential role in a number of phenomena involving the transfer of atoms and atomic groups in the condensed phase. One may expect that these effects may exist not only in the proton transfer reactions considered above but also in such processes as the diffusion of hydrogen atoms and other light ions (e.g., Li+) in liquids, tunnel inversion and isomerization in some molecules, quantum diffusion of defects and light atoms in the electrode at cathodic incorporation of the ions, ion transfer across the liquid/solid interface, and low-temperature chemical reactions. [Pg.142]

When a solid acts as a catalyst for a reaction, reactant molecules are converted into product molecules at the fluid-solid interface. To use the catalyst efficiently, we must ensure that fresh reactant molecules are supplied and product molecules removed continuously. Otherwise, chemical equilibrium would be established in the fluid adjacent to the surface, and the desired reaction would proceed no further. Ordinarily, supply and removal of the species in question depend on two physical rate processes in series. These processes involve mass transfer between the bulk fluid and the external surface of the catalyst and transport from the external surface to the internal surfaces of the solid. The concept of effectiveness factors developed in Section 12.3 permits one to average the reaction rate over the pore structure to obtain an expression for the rate in terms of the reactant concentrations and temperatures prevailing at the exterior surface of the catalyst. In some instances, the external surface concentrations do not differ appreciably from those prevailing in the bulk fluid. In other cases, a significant concentration difference arises as a consequence of physical limitations on the rate at which reactant molecules can be transported from the bulk fluid to the exterior surface of the catalyst particle. Here, we discuss... [Pg.474]

Chromium zeolites are recognised to possess, at least at the laboratory scale, notable catalytic properties like in ethylene polymerization, oxidation of hydrocarbons, cracking of cumene, disproportionation of n-heptane, and thermolysis of H20 [ 1 ]. Several factors may have an effect on the catalytic activity of the chromium catalysts, such as the oxidation state, the structure (amorphous or crystalline, mono/di-chromate or polychromates, oxides, etc.) and the interaction of the chromium species with the support which depends essentially on the catalysts preparation method. They are ruled principally by several parameters such as the metal loading, the support characteristics, and the nature of the post-treatment (calcination, reduction, etc.). The nature of metal precursor is a parameter which can affect the predominance of chromium species in zeolite. In the case of solid-state exchange, the exchange process initially takes place at the solid- solid interface between the precursor salt and zeolite grains, and the success of the exchange depends on the type of interactions developed [2]. The aim of this work is to study the effect of the chromium precursor on the physicochemical properties of chromium loaded ZSM-5 catalysts and their catalytic performance in ethylene ammoxidation to acetonitrile. [Pg.345]

V. Chan, S.E. McKenzie, S. Surrey, P. Fortina, and DJ. Graves, Effect of hydrophobidty and electrostatics on adsorption of DNA oligonucleotides at liquid/solid interfaces. J. Coll. Interf. Sci. 203, 197-207 (1998). [Pg.235]

The central issue which has to be addressed in any comprehensive study of electrode-surface phenomena is the determination of an unambiguous correlation between interfacial composition, interfacial structure, and interfacial reactivity. This principal concern is of course identical to the goal of fundamental studies in heterogeneous catalysis at gas-solid interfaces. However, electrochemical systems are far more complicated since a full treatment of the electrode-solution interface must incorporate not only the compact (inner) layer but also the boundary (outer) layer of the electrical double-layer. The effect of the outer layer on electrode reactions has been neglected in most surface electrochemical studies but in certain situations, such as in conducting polymers and... [Pg.2]

Fig. 19. The extent of the liquid - solid interface, as long as this is plane, has no effect on solubility. When the small solid 1, in a conical container, dissolves, its interface with the solvent increases. When a material is deposited on the large solid 2, the surface area of the latter decreases... Fig. 19. The extent of the liquid - solid interface, as long as this is plane, has no effect on solubility. When the small solid 1, in a conical container, dissolves, its interface with the solvent increases. When a material is deposited on the large solid 2, the surface area of the latter decreases...

See other pages where Solids interface effects is mentioned: [Pg.182]    [Pg.354]    [Pg.394]    [Pg.222]    [Pg.139]    [Pg.87]    [Pg.298]    [Pg.301]    [Pg.308]    [Pg.627]    [Pg.52]    [Pg.53]    [Pg.162]    [Pg.5]    [Pg.57]    [Pg.567]    [Pg.280]    [Pg.239]    [Pg.12]    [Pg.50]    [Pg.82]    [Pg.83]    [Pg.197]    [Pg.32]    [Pg.105]    [Pg.110]    [Pg.339]    [Pg.1]    [Pg.66]    [Pg.309]    [Pg.880]    [Pg.331]   
See also in sourсe #XX -- [ Pg.785 , Pg.786 , Pg.787 , Pg.788 , Pg.789 ]




SEARCH



Effect solids

Effective interface

Interface effects

Solid Interface

© 2024 chempedia.info