Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solids, creep

On the other hand, the reliability of the product improves, too, if each state of the plasticity deformation, the creep deformation, and the diffusion joint in the solid phase diffusion bonding as the bonding process, is accurately understood, and the bonding process is controlled properly. [Pg.849]

Carbon disulphide should never be used if any alternative solvent is available, as it has a dangerously low flash-point, and its vapours form exceedingly explosive mixtures with air. Ether as a solvent for recrystallisation is much safer than carbon disulphide, but again should be avoided whenever possible, partly on account of the danger of fires, and partly because the filtered solution tends to creep up the walls of the containing vessel and there deposit solid matter by complete evaporation instead of preferential crystallisation. [Pg.15]

Dislocations are known to be responsible for die short-term plastic (nonelastic) properties of substances, which represents departure from die elastic behaviour described by Hooke s law. Their concentration determines, in part, not only dris immediate transport of planes of atoms drrough die solid at moderate temperatures, but also plays a decisive role in die behaviour of metals under long-term stress. In processes which occur slowly over a long period of time such as secondaiy creep, die dislocation distribution cannot be considered geometrically fixed widrin a solid because of die applied suess. [Pg.180]

An account of the mechanism for creep in solids placed under a compressive hydrostatic suess which involves atom-vacancy diffusion only is considered in Nabano and Hemirg s (1950) volume diffusion model. The counter-movement of atoms and vacancies tends to relieve the effects of applied pressure, causing extension normal to the applied sU ess, and sluinkage in the direction of the applied sU ess, as might be anticipated from Le Chatelier s principle. The opposite movement occurs in the case of a tensile sU ess. The analysis yields the relationship... [Pg.181]

It was shown earlier that the NabaiTO-Hemirg model of creep in solids involved the migration of vacancies out of the stressed solid accompanied by counter-migration of atoms to reduce dre length of the solid in the direction of the applied stress. This property could clearly contribute to densification under an external pressure, given sufficient time of application of the stress... [Pg.208]

Creep of polymers is a major design problem. The glass temperature Tq, for a polymer, is a criterion of creep-resistance, in much the way that is for a metal or a ceramic. For most polymers, is close to room temperature. Well below Tq, the polymer is a glass (often containing crystalline regions - Chapter 5) and is a brittle, elastic solid -rubber, cooled in liquid nitrogen, is an example. Above Tq the Van der Waals bonds within the polymer melt, and it becomes a rubber (if the polymer chains are cross-linked) or a viscous liquid (if they are not). Thermoplastics, which can be moulded when hot, are a simple example well below Tq they are elastic well above, they are viscous liquids, and flow like treacle. [Pg.193]

Cyclone mist eliminators and collectors have virtually the same efficiency for both liquid aerosols and solid particles. To avoid reentrainment of the collected liquid from the walls of the cyclone, an upper limit is set to the tangential velocity that can be used. The maximum tangential velocity should be limited to the inlet velocity. Even at this speed, the liquid film may creep to the edge of the exit pipe, from which the liquid is then reentrained. [Pg.476]

Note that the ratio of the ratio of the hoop stress (pR/h) to the axial stress (pR/lh) is only 2. From the data in this question the hoop stress will be 8.12 MN/m. A plastic cylinder or pipe is an interesting situation in that it is an example of creep under biaxial stresses. The material is being stretched in the hoop direction by a stress of 8.12 MN/m but the strain in this direction is restricted by the perpendicular axial stress of 0.5(8.12) MN/m. Reference to any solid mechanics text will show that this situation is normally dealt with by calculating an equivalent stress, Og. For a cylinder under pressure Og is given by 0.5hoop stress. This would permit the above question to be solved using the method outlined earlier. [Pg.59]

It is apparent therefore that the Superposition Principle is a convenient method of analysing complex stress systems. However, it should not be forgotten that the principle is based on the assumption of linear viscoelasticity which is quite inapplicable at the higher stress levels and the accuracy of the predictions will reflect the accuracy with which the equation for modulus (equation (2.33)) fits the experimental creep data for the material. In Examples (2.13) and (2.14) a simple equation for modulus was selected in order to illustrate the method of solution. More accurate predictions could have been made if the modulus equation for the combined Maxwell/Kelvin model or the Standard Linear Solid had been used. [Pg.103]

The dense-phase regime can be further subdivided into three distinct regions,which are shown in Fig. 14.3. In continuous dense-phase flow the material moves by saltation over a stable creeping bed, in discontinuous dense-phase flow particles move as groups, and in the solid dense-phase the solids are extruded through the pipe as a continuous slag. [Pg.1323]

DavkJ Ford Sims, Viscoelastic Creep and Relaxation Behavior of Laminated Composite Plates, Ph.O. dissertation. Department of Mechanical Engineering and Solid Mechanics Center, Institute of Technology, Southern Methodist University, Dallas, Texas, 1972. (Also available from Xerox University Microfilms as Order 72-27,298.)... [Pg.365]

The unit shown in Figure 4-49 has been used in many process applications with a variety of modifications [18,19,20]. It is effective in liquid entrainment separation, but is not recommended for solid particles due to the arrangement of the bottom and outlet. The flat bottom plate serves as a protection to the developing liquid surface below. This prevents re-entrainment. In place of the plate a vortex breaker type using vertical cross plates of 4-inch to 12-inch depth also is used, (Also see Reference [58].) The inlet gas connection is placed above the outlet dip pipe by maintaining dimension of only a few inches at point 4. In this type unit some liquid will creep up the walls as the inlet velocity increases. [Pg.264]

Material behavior have many classifications. Examples are (1) creep, and relaxation behavior with a primary load environment of high or moderate temperatures (2) fatigue, viscoelastic, and elastic range vibration or impact (3) fluidlike flow, as a solid to a gas, which is a very high velocity or hypervelocity impact and (4) crack propagation and environmental embrittlement, as well as ductile and brittle fractures. [Pg.45]

Many materials of practical interest (such as polymer solutions and melts, foodstuffs, and biological fluids) exhibit viscoelastic characteristics they have some ability to store and recover shear energy and therefore show some of the properties of both a solid and a liquid. Thus a solid may be subject to creep and a fluid may exhibit elastic properties. Several phenomena ascribed to fluid elasticity including die swell, rod climbing (Weissenberg effect), the tubeless siphon, bouncing of a sphere, and the development of secondary flow patterns at low Reynolds numbers, have recently been illustrated in an excellent photographic study(18). Two common and easily observable examples of viscoelastic behaviour in a liquid are ... [Pg.115]

A similar process can be observed at the asperity level, as shown in Fig. 33, where a lateral force F pulls the upper solid forward by a distance, u, while the asperity attached to the solid body remains in contact with the lower asperity. The value of u at the moment when the asperity is suddenly pulled out of contact gives rise to creep length of static friction. By referring to the force curve shown in the inserted panel of Fig. 33, the creep distance for this system is estimated to be similar with the asperity dimension in the sliding direction, which is in agreement with the measured creep length, 1 fim, as reported in Ref. [30]. [Pg.183]


See other pages where Solids, creep is mentioned: [Pg.891]    [Pg.180]    [Pg.320]    [Pg.48]    [Pg.74]    [Pg.891]    [Pg.180]    [Pg.320]    [Pg.48]    [Pg.74]    [Pg.79]    [Pg.123]    [Pg.679]    [Pg.1028]    [Pg.209]    [Pg.18]    [Pg.170]    [Pg.194]    [Pg.281]    [Pg.305]    [Pg.170]    [Pg.324]    [Pg.373]    [Pg.972]    [Pg.995]    [Pg.251]    [Pg.70]    [Pg.258]    [Pg.111]    [Pg.188]    [Pg.203]    [Pg.469]    [Pg.22]    [Pg.182]    [Pg.893]    [Pg.279]   
See also in sourсe #XX -- [ Pg.115 ]




SEARCH



Creeping flow Newtonian fluid, solid sphere

Linear viscoelastic solids creep compliance function

Solids, creep mixing

© 2024 chempedia.info