Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid sampling techniques Applications

Solid sampling techniques enable direct analysis of the homogenised tissues. A number of such applications for analysing solid biological tissues have been reported (Chakrabarti et al., 1980 Lundgren and Johansson, 1974, Nordahl, 1990). However the dried tissue invariably needs to be solubilised for trace element analysis using techniques requiring the sample in a solution form (Fry and Denton, 1977 Hohl et al., 1989). [Pg.31]

Other solid sampling techniques While in an article such as this, it is not possible to cover all mid-infra-red sampling techniques two other methods that have been used significantly in analytical spectroscopy applications are photoacoustic spectroscopy and emission spectroscopy. [Pg.2242]

Theoretical and applied aspects of microwave heating, as well as the advantages of its application are discussed for the individual analytical processes and also for the sample preparation procedures. Special attention is paid to the various preconcentration techniques, in part, sorption and extraction. Improvement of microwave-assisted solution preconcentration is shown on the example of separation of noble metals from matrix components by complexing sorbents. Advantages of microwave-assisted extraction and principles of choice of appropriate solvent are considered for the extraction of organic contaminants from solutions and solid samples by alcohols and room-temperature ionic liquids (RTILs). [Pg.245]

Rutherford back-scattering spectroscopy (RBS) is one of the most frequently used techniques for quantitative analysis of composition, thickness, and depth profiles of thin solid films or solid samples near the surface region. It has been in use since the nineteen-sixties and has since evolved into a major materials-characterization technique. The number and range of applications are enormous. Because of its quantitative feature, RBS often serves as a standard for other techniques. [Pg.141]

For the application of flame spectroscopic methods the sample must be prepared in the form of a suitable solution unless it is already presented in this form exceptionally, solid samples can be handled directly in some of the non-flame techniques (Section 21.6). [Pg.801]

This mode of chromatogram development is, in principle, almost identical with continuous development. The only feature that varies is the length of the developing path. In short bed-continuous development (SB/CD), this path is very short, typically equal to several centimeters [23-25]. This is the reason why this mode is preferentially applied for analytical separations. However, a similar technique is applied for zonal sample application and online extraction of solid samples, which are described in the following text. [Pg.142]

Solid-phase sorbents are also used in a technique known as matrix solid-phase dispersion (MSPD). MSPD is a patented process first reported in 1989 for conducting the simultaneous disruption and extraction of solid and semi-solid samples. The technique is rapid and requires low volumes (ca. 10 mL) of solvents. One problem that has hindered further progress in pesticide residues analysis is the high ratio of sorbent to sample, typically 0.5-2 g of sorbent per 0.5 g of sample. This limits the sample size and creates problems with representative sub-sampling. It permits complete fractionation of the sample matrix components and also the ability to elute selectively a single compound or class of compounds from the same sample. Excellent reviews of the practical and theoretical aspects of MSPD " and applications in food analysis were presented by Barker.Torres et reported the use of MSPD for the... [Pg.733]

Different analytical procedures have been developed for direct atomic spectrometry of solids applicable to inorganic and organic materials in the form of powders, granulate, fibres, foils or sheets. For sample introduction without prior dissolution, a sample can also be suspended in a suitable solvent. Slurry techniques have not been used in relation to polymer/additive analysis. The required amount of sample taken for analysis typically ranges from 0.1 to 10 mg for analyte concentrations in the ppm and ppb range. In direct solid sampling method development, the mass of sample to be used is determined by the sensitivity of the available analytical lines. Physical methods are direct and relative instrumental methods, subjected to matrix-dependent physical and nonspectral interferences. Standard reference samples may be used to compensate for systematic errors. The minimum difficulties cause INAA, SNMS, XRF (for thin samples), TXRF and PIXE. [Pg.626]

Application to solid polymer/additive formulations is restricted, for obvious reasons. SS-ETV-ICP-MS (cup-in-tube) has been used for the simultaneous determination of four elements (Co, Mn, P and Ti) with very different furnace characteristics in mg-size PET samples [413]. The results were compared to ICP-AES (after sample dissolution) and XRF. Table 8.66 shows the very good agreement between the various analytical approaches. The advantage of directly introducing the solid sample in an ETV device is also clearly shown by the fact that the detection limit is even better than that reported for ICP-HRMS. The technique also enables speciation of Sb in PET, and the determination of various sulfur species in aramide fibres. ETV offers some advantages over the well-established specific sulfur analysers very low sample consumption the possibility of using an aqueous standard for calibration and the flexibility to carry out the determination of other analytes. The method cannot be considered as very economic. [Pg.658]

The popularity of this extraction method ebbs and flows as the years go by. SFE is typically used to extract nonpolar to moderately polar analytes from solid samples, especially in the environmental, food safety, and polymer sciences. The sample is placed in a special vessel and a supercritical gas such as CO2 is passed through the sample. The extracted analyte is then collected in solvent or on a sorbent. The advantages of this technique include better diffusivity and low viscosity of supercritical fluids, which allow more selective extractions. One recent application of SFE is the extraction of pesticide residues from honey [27]. In this research, liquid-liquid extraction with hexane/acetone was termed the conventional method. Honey was lyophilized and then mixed with acetone and acetonitrile in the SFE cell. Parameters such as temperature, pressure, and extraction time were optimized. The researchers found that SFE resulted in better precision (less than 6% RSD), less solvent consumption, less sample handling, and a faster extraction than the liquid-liquid method [27]. [Pg.37]

X-ray fluorescence spectrometry was the first non-destructive technique for analysing surfaces and produced some remarkable results. The Water Research Association, UK, has been investigating the application of X-ray fluorescence spectroscopy to solid samples. Some advantages of nondestructive methods are no risk of loss of elements during sample handling operations, the absence of contamination from reagents, etc. and the avoidance of capital outlay on expensive instruments and highly trained staff. [Pg.451]

API offers unique opportunities for the implementation of new sources or to develop new applications. Atmospheric pressure matrix assisted laser desorption (AP-MALDI) [21] can be mounted on instruments such as ion traps which were originally designed only for electrospray and LC-MS. New API desorption techniques such as desorption electrospray (DESI) [22] or direct analysis in real time (DART) [23] have been described and offer unique opportunities for the analysis of surfaces or of solid samples. [Pg.12]


See other pages where Solid sampling techniques Applications is mentioned: [Pg.387]    [Pg.134]    [Pg.378]    [Pg.449]    [Pg.452]    [Pg.59]    [Pg.219]    [Pg.11]    [Pg.231]    [Pg.234]    [Pg.240]    [Pg.345]    [Pg.138]    [Pg.141]    [Pg.429]    [Pg.651]    [Pg.117]    [Pg.204]    [Pg.468]    [Pg.609]    [Pg.611]    [Pg.626]    [Pg.648]    [Pg.72]    [Pg.220]    [Pg.151]    [Pg.661]    [Pg.33]    [Pg.65]    [Pg.69]    [Pg.104]    [Pg.265]    [Pg.66]    [Pg.10]    [Pg.83]    [Pg.187]    [Pg.249]    [Pg.161]   
See also in sourсe #XX -- [ Pg.138 , Pg.139 , Pg.140 , Pg.141 , Pg.142 ]




SEARCH



Application techniques

Applications sampling techniques

Sample application

Sample application solid samples

Sample applicator

Sample solid samples

Sampling solids

Sampling techniques

Sampling techniques samples

Solids techniques

© 2024 chempedia.info