Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thin samples

Ultramicrotomy is sometimes also used to produce thin samples of solid materials, such as metals [13] which are, however, preferentially prepared by chemical- or ion-etching (see [1]) and focused ion beam (FIB) teclmiques [14]. [Pg.1633]

In many ways the nanocrystal characterization problem is an ideal one for transmission electron microscopy (TEM). Here, an electron beam is used to image a thin sample in transmission mode [119]. The resolution is a sensitive fimction of the beam voltage and electron optics a low-resolution microscope operating at 100 kV might... [Pg.2903]

X-radiation can also be induced by high energy (several Me proton beams from ion accelerators. Such particle-induced x-ray emission (PIXE) (284) is useful for thin samples and particulates, having detection Hmits of g. Intense synchrotron x-ray sources have found appHcations in... [Pg.320]

Figure 1a Schematic diagram of a TEM instrument, showing the location of a thin sample and the principal lenses within a TEM column. Figure 1a Schematic diagram of a TEM instrument, showing the location of a thin sample and the principal lenses within a TEM column.
Hgura 5 (a) Schematic of a thin sample with atomic planes that are close to a Bragg... [Pg.111]

The STEM instrument itself can produce highly focused high-intensity beams down to 2 A if a field-emission source is used. Such an instrument provides a higher spatial resolution compositional analysis than any other widely used technique, but to capitalize on this requires very thin samples, as stated above. EELS and EDS are the two composition techniques usually found on a STEM, but CL, and even AES are sometimes incorporated. In addition simultaneous crystallographic information can be provided by diffraction, as in the TEM, but with 100 times better spatial resolution. The combination of diffraction techniques and analysis techniques in a TEM or STEM is termed Analytical Electron Microscopy, AEM. A well-equipped analytical TEM or STEM costs well over 1,000,000. [Pg.119]

Compared to EDS, which uses 10-100 keV electrons, PEXE provides orders-of-magnitude improvement in the detection limits for trace elements. This is a consequence of the much reduced background associated with the deceleration of ions (called bremsstrahlun compared to that generated by the stopping of the electrons, and of the similarity of the cross sections for ioiuzing atoms by ions and electrons. Detailed comparison of PIXE with XRF showed that PDCE should be preferred for the analysis of thin samples, surfrce layers, and samples with limited amounts of materials. XRF is better (or bulk analysis and thick specimens because the somewhat shallow penetration of the ions (e.g., tens of pm for protons) limits the analytical volume in PIXE. [Pg.358]

Self-absorption occurs when the path-length is too large [35] and the X-rays emitted have a significant probability of being absorbed by the remainder of the sample before being detected. This has the consequence of reducing the amplitude of the EXAFS oscillations and producing erroneous results. As the sample becomes more dilute this probability decreases. All the atoms in the sample determine the amount of self-absorption hence the need for thin samples. [Pg.141]

Table 5 compares the tensile properties of Vectra A950 in the form of dispersed fibers and droplets in the matrix by injection molding, microfibril by extrusion and drawing [28], injection molded pure thick sample and pure thin sample, and the pure drawn strand [28]. As exhibited, our calculated fiber modulus with its average of 24 GPa is much higher than that of the thick and thin pure TLCP samples injection molded. It can be explained that in cases of pure TLCP samples the material may only be fibrillated in a very thin skin layer owing to the excellent flow behavior in comparison with that in the blends. However, this modulus value is lower than that of the extruded and drawn pure strand. This can be... [Pg.701]

The analysis of thin samples by x-ray emission spectrography is based upon an extension of Equation 6-9. This equation is... [Pg.167]

The transition from Equation 6-9 to Equation 7-3 may be considered the simplest possible transition from determining film thickness by x-ray emission to determining film composition by x-ray emission spectrography. As the atoms in these thin samples do not influence each other as regards x-ray absorption and emission, the same experimental results may be used to support both equations. Such results are cited in Chapter 6 and below.11-14... [Pg.167]

Thickness gaging, of steel strip, 69-71 use of cobalt-60 for, 291 Thick-target x-ray spectra, 6, 7, 99-101 Thin films, thickness determined by characteristic line intensity, 153 Thin samples, analysis by x-ray emission spectrography, 167... [Pg.354]

Figure 7. Dependence of the fluorescence quamum yield of BMPC on solvent viscosity ( ) in linear alcohols, from methanol to dccanol, at 25°C, (o) in absolute ethanol between 200 and 298 K. The quantum yields were measured on optically thin samples (Am <0.2). The value in ethanol, 5.7x10, was determined relative to quinine sulfate in 0.5 mol 1" HjSO ((j)p=0.55 [62]) and 9,10-diphenylanthracene in cyclohexane (4ip=0.90 [63]). It was then used as a reference for the determinations in the other alcohols. Figure 7. Dependence of the fluorescence quamum yield of BMPC on solvent viscosity ( ) in linear alcohols, from methanol to dccanol, at 25°C, (o) in absolute ethanol between 200 and 298 K. The quantum yields were measured on optically thin samples (Am <0.2). The value in ethanol, 5.7x10, was determined relative to quinine sulfate in 0.5 mol 1" HjSO ((j)p=0.55 [62]) and 9,10-diphenylanthracene in cyclohexane (4ip=0.90 [63]). It was then used as a reference for the determinations in the other alcohols.
Electron energy loss spectroscopy An analytical technique used to characterize the chemistry, bonding, and electronic structure of thin samples of materials. It is normally performed in a transmission electron microscope. The inelastically scattered electron beams are spectroscopically analyzed to give the energy spectrum of electrons after the interaction. [Pg.10]

The hybridization of carbon atoms is the major structural parameter controlling DLC film properties. Electron energy loss spectroscopy (EELS) has been extensively used to probe this structural feature [5. 6]. In a transmission electron microscope, a monoenergetic electron beam is impinged in a very thin sample, being the transmitted electrons analyzed in energy. Figure 27 shows a typical... [Pg.252]

We demonstrate the procedure with an experiment conducted on a Bentheimer sandstone sample. For simplicity, we use a relatively thin sample and resolve only the two in-plane spatial coordinates. The sample is a rectangular parallelepiped shape having a length of 50 mm extending in the z direction, width 25 mm along the z2 direction and thickness 5 mm in the z3 direction. The sample was sealed laterally with epoxy and mounted in Plexiglass end-plates with O-rings and tube... [Pg.371]

Different analytical procedures have been developed for direct atomic spectrometry of solids applicable to inorganic and organic materials in the form of powders, granulate, fibres, foils or sheets. For sample introduction without prior dissolution, a sample can also be suspended in a suitable solvent. Slurry techniques have not been used in relation to polymer/additive analysis. The required amount of sample taken for analysis typically ranges from 0.1 to 10 mg for analyte concentrations in the ppm and ppb range. In direct solid sampling method development, the mass of sample to be used is determined by the sensitivity of the available analytical lines. Physical methods are direct and relative instrumental methods, subjected to matrix-dependent physical and nonspectral interferences. Standard reference samples may be used to compensate for systematic errors. The minimum difficulties cause INAA, SNMS, XRF (for thin samples), TXRF and PIXE. [Pg.626]

Lateral resolution (0.5-1 p,m bulk 1 nm for thin samples in STEM)... [Pg.631]


See other pages where Thin samples is mentioned: [Pg.517]    [Pg.1324]    [Pg.1630]    [Pg.1635]    [Pg.1845]    [Pg.192]    [Pg.11]    [Pg.28]    [Pg.100]    [Pg.101]    [Pg.110]    [Pg.118]    [Pg.262]    [Pg.413]    [Pg.423]    [Pg.97]    [Pg.106]    [Pg.141]    [Pg.698]    [Pg.701]    [Pg.701]    [Pg.291]    [Pg.167]    [Pg.297]    [Pg.204]    [Pg.249]    [Pg.239]    [Pg.544]    [Pg.296]    [Pg.480]    [Pg.323]    [Pg.640]   
See also in sourсe #XX -- [ Pg.97 , Pg.106 , Pg.107 ]

See also in sourсe #XX -- [ Pg.52 , Pg.64 , Pg.89 , Pg.90 , Pg.277 ]




SEARCH



© 2024 chempedia.info