Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium, red

Like sodium, red-hot iron can also be used to make hydrogen from water. The water must be in the form of steam, which causes the iron to oxidize, so producing iron... [Pg.25]

LEAD DINITRATE (10099-74-8) Pb(N03)2 Noncombustible solid. A strong oxidizer accelerates burning of combustible materials. Violent reaction, or may form explosive materials, with reducing agents, including hydrides, nitrides, phosphoms, stannous chloride, and sulfides alkyl esters (forms explosive alkyl nitrates) combustible materials, potassium hexanitrocobalite(III) (C. I. pigment yellow), cyclopentadienyl sodium, red hot carbon, lead(II) phosphinate, phosphoms, tin(II) chloride. Incompatible with aluminum, ammonia, ammonium thiocyanate (mixture forms the shock- and friction sensitive explosive guanidine nitrate) citric acid, hydrozoic acid, metal phosphinates, methyl isocyanoacetate, sodium peroxyborate, potassium acetate. [Pg.629]

Benedict solution Aqueous solution of Na2C03, CuSO, and sodium citrate used for testing for reducing agents, particularly sugars, which give red-yellow colours or precipitates. [Pg.54]

Trichloroethanoic acid, CCI3COOH. A crystalline solid which rapidly absorbs water vapour m.p. 58°C, b.p. 196-5" C. Manufactured by the action of chlorine on ethanoic acid at 160°C in the presence of red phosphorus, sulphur or iodine. It is decomposed into chloroform and carbon dioxide by boiling water. It is a much stronger acid than either the mono- or the dichloro-acids and has been used to extract alkaloids and ascorbic acid from plant and animal tissues. It is a precipitant for proteins and may be used to test for the presence of albumin in urine. The sodium salt is used as a selective weedkiller. [Pg.94]

Cr(02CCH3)2]2,2H20. Red insoluble compound formed from sodium ethanoate and CrC)2 in aqueous solution. The most stable Cr(II) compound contains a Cr —Cr bond, chromium fluorides... [Pg.98]

C12H9N3O4. A brownish-red powder, soluble in sodium hydroxide. Used for the detection and estimation of magnesium, with which it forms a blue lake in alkaline solutions. [Pg.246]

CfiHsNjOs. Red needles m.p. 168-169°C. Soluble in dilute acids and alkalis. Prepared by reduction of picric acid with sodium hydrogen sulphide, ft is used for the preparation of azodyes, which can be after-chromed by treatment with metallic salts owing to the presence of a hydroxyl group ortho to the amino-group. [Pg.313]

If triphenylmethyl chloride in ether is treated with sodium, a yellow colour is produced due to the presence of the anionic spiecies PhsC". Alternatively, if triphenylmethyl chloride is treated with silver perchlorate in a solvent such as THF, the triphenylmethyl cation is obtained. More conveniently, triphenylmethyl salts, PhsC X", can be obtained as orange-red crystalline solids from the action of the appropriate strong acid on triphenylcarbinol in ethanoic or propanoic anhydride solution. The perchlorate, fluoroborate and hexafluoro-phosphate salts are most commonly used for hydride ion abstraction from organic compounds (e.g. cycloheptatriene gives tropylium salts). The salts are rather easily hydrolysed to triphenylcarbinol. [Pg.406]

All the cations of Group I produce a characteristic colour in a flame (lithium, red sodium, yellow potassium, violet rubidium, dark red caesium, blue). The test may be applied quantitatively by atomising an aqueous solution containing Group I cations into a flame and determining the intensities of emission over the visible spectrum with a spectrophotometer Jlame photometry). [Pg.136]

Aluminium oxide is a white solid, insoluble in water, with a very high melting point. If heated above red heat, it becomes insoluble in acids and alkalis, and can only be brought into solution by first fusing it with sodium or potassium hydroxide when an aluminate is formed. [Pg.150]

If the chloride is heated with sodium or potassium dichromate-(VI) and concentrated sulphuric acid, a red gas, chromium(VI) dichloride dioxide, CrOjClj, is evolved if this is passed into water, a yellow solution of a chromate(VI) is formed. [Pg.349]

The chromates of the alkali metals and of magnesium and calcium are soluble in water the other chromates are insoluble. The chromate ion is yellow, but some insoluble chromates are red (for example silver chromate, Ag2Cr04). Chromates are often isomorph-ous with sulphates, which suggests that the chromate ion, CrO has a tetrahedral structure similar to that of the sulphate ion, SO4 Chromates may be prepared by oxidising chromium(III) salts the oxidation can be carried out by fusion with sodium peroxide, or by adding sodium peroxide to a solution of the chromium(IIl) salt. The use of sodium peroxide ensures an alkaline solution otherwise, under acid conditions, the chromate ion is converted into the orange-coloured dichromate ion ... [Pg.378]

Copperil) oxide, CujO, occurs naturally as the red cuprite. It is obtained as an orange-yellow precipitate by the reduction of a copper(II) salt in alkaline solution by a mild reducing agent, for example glucose, hydroxylamine or sodium sulphite ... [Pg.414]

The metal is slowly oxidised by air at its boiling point, to give red mercury(II) oxide it is attacked by the halogens (which cannoi therefore be collected over mercury) and by nitric acid. (The reactivity of mercury towards acids is further considered on pp. 436, 438.) It forms amalgams—liquid or solid—with many other metals these find uses as reducing agents (for example with sodium, zinc) and as dental fillings (for example with silver, tin or copper). [Pg.435]

Dissolve a small portion of the sodium derivative in a few mi. of water in a test-tube, and add one drop of ferric chloride solution. A deep red coloration is produced, but rapidly disappears as the iron is precipitated as ferric hydroxide. The sodium (derivative (A) of the nitromethane wh dissolved in water undergoes partial hydrolysis,... [Pg.133]

Dissolve a few drops of nitromethane in 10% sodium hydroxide solution. Add a few crystals of sodium nitrite and shake. Now add dilute sulphuric acid drop by drop. A brownish-red coloration develops, but fades again when an excess of acid is added. The sulphuric acid has thus liberated nitrous acid, which has in turn reacted with the nitromethane to give a nitrolic acid, the sodium salt of which is CH3NO2 + ONOH = CH(N02) N0H + HgO reddish-brown in colour, probably owing to mesomeric ions of the type ... [Pg.134]

Suspend the crude hydrochloride in some water in a separating-funnel and add 20% sodium hydroxide solution until the mixture is definitely alkaline and the crude phenylhydrazine base floats as a deep red oil on the surface. Now extract the phenylhydrazine twice with benzene (using about 30 ml. of benzene on each occasion) and dry the united benzene extracts with powdered... [Pg.198]

Reaction of Diphenylnitrosoamine. Carry out Liebermann s Nitroso Reaction as described for phenol (p. 340), but use about 0 05 g. of the nitrosamine instead of the one crystal of sodium nitrite, and finally add only 3-4 drops of sulphuric acid. The deep greenish-blue colour is obtained, becoming red on dilution and reverting to blue on being made alkaline. [Pg.204]

Dissolve 4 5 ml. of aniline in a mixture of 10 ml. of concentrated hydrochloric acid and 20 ml. of water cool the solution to 5°, and diazotise by the addition of 4 g. of sodium nitrite dissolved in 20 ml, of water, observing the usual precautions given on page 181. Dissolve 7 g. of 2-naphthol in 60 ml. of 10% sodium hydroxide solution contained in a 200 ml. beaker, and cool this solution to 5 by external cooling, aided by the direct addition of about 20-30 g. of crushed ice. Now add the diazotised solution very slowly to the naphthol solution, keeping the latter well stirred meanwhile the mixed solutions immediately develop a deep red colour, and the benzeneazonaphthol should... [Pg.210]

Dissolve 2 g. of anhydrous sodium carbonate in 50 ml. of water contained in a 400 ml. beaker and add 7 g. of finely powdered crystalline sulphanilic acid (2H2O), warming the mixture gently in order to obtain a clear solution. Add a solution of 2 2 g. of sodium nitrite in 10 ml. of water and then cool the mixture in ice-water until the temperature has fallen to 5°. Now add very slowly (drop by drop) with continual stirring a solution of 8 ml. of concentrated hydrochloric acid in 15 ml. of water do not allow the temperature to rise above 10°. When all the acid has been added, allow the solution to stand in ice-water for 15 minutes to ensure complete diazotisation during this period fine crystals of the internal salt separate from the pink solution. Dissolve 4 ml. of dimethylaniline in a mixture of 4 ml. of concentrated hydrochloric acid and 10 ml. of water, cool the solution in ice-water, and add it slowly to the cold well-stirred diazo solution a pale red coloration is developed. Allow the mixture to stand for 5 minutes and then add slowly with stirring aqueous... [Pg.214]

The use of methyl-orange as an indicator is based on the fact that the sodium salt in aqueous solution furnishes a yellow anion, which when treated with acids (except weak acids such as H2CO3 and H SOj) apparently gives rise to a red... [Pg.215]

To 2 ml. of a freshly prepared dilute aqueous solution of sodium nitroprusside, add 2 drops of ethyl malonate and shake then add 2-3 drops of 10% aqueous sodium hydroxide solution and shake again. A red coloration at once appears, but fades in a few minutes to pale brown,... [Pg.274]

Amino-4 -methylthiazole slowly decomposes on storage to a red viscous mass. It can be stored as the nitrate, which is readily deposited as pink crystals when dilute nitric acid is added to a cold ethanolic solution of the thiazole. The nitrate can be recrystallised from ethanol, although a faint pink colour persists. Alternatively, water can be added dropwise to a boiling suspension of the nitrate in acetone until the solution is just clear charcoal is now added and the solution, when boiled for a short time, filtered and cooled, deposits the colourless crystalline nitrate, m.p. 192-194° (immersed at 185°). The thiazole can be regenerated by decomposing the nitrate with aqueous sodium hydroxide, and extracting the free base with ether as before. [Pg.306]

Arylarsonic acids have usually a very low solubility in cold water. They are however amphoteric, since with, for example, sodium hydroxide they form sodium salts as above and with acids such as hydrochloric acid they form salts of the type [CaHjAsCOHljlCl. Both types of salt are usually soluble in water, and to isolate the free acid the aqueous solution has to be brought to the correct pH for most arsonic acids this can be achieved by niaking the solution only just acid to Congo Red, when the free acid will usually rapidly separate. [Pg.312]

Sodium Fusion on Semi mlcro Scale. The Lassaigne test can be readily carried out with as little as 0 01 g. of material, using sodium pellets about 2 mm. in diameter in a tube about 3 x. After fusion, the red-hot tube is plunged into distilled water in a small porcelain crucible or in a boiling tube. The mixture is then heated, filtered and tested as already described. [Pg.325]

Azo-dye formation. Dissolve 2-3 drops of aniline in 1 ml. of cone. HCl and add 3 ml. of water. Shaike to dissolve any hydrochloride which may have separated and cool in ice. Add a few drops of 20% sodium nitrite solution. Add this cold diazonium solution to a cold solution of the phenol in an excess of aqueous NaOH solution. Solutions or precipitates of azo-dyes ranging in colour from orange through scarlet to dark red, according to the phenol used, are obtained. Note in particular that i-naphthol gives a brownish-red, 2-naphthol a scarlet precipitate. Catechol decomposes. [Pg.339]

Ltebermann Reaction To 1 minute crystal of sodium nitrite in a clean dry test-tube add 0 5 g. of phenol and heat very gently for about 20 seconds allow to cool and add twice the volume of cone. H2S04. On rotating the tube slowly in order to mix the contents, a deep green or deep blue coloration develops (some times only after i 2 minutes). Dilute cautiously with water the solution turns red. Now add an excess of NaOH solution the green or blue coloration reappears. [Pg.340]


See other pages where Sodium, red is mentioned: [Pg.392]    [Pg.392]    [Pg.630]    [Pg.766]    [Pg.944]    [Pg.945]    [Pg.945]    [Pg.392]    [Pg.392]    [Pg.630]    [Pg.766]    [Pg.944]    [Pg.945]    [Pg.945]    [Pg.141]    [Pg.199]    [Pg.239]    [Pg.261]    [Pg.280]    [Pg.149]    [Pg.106]    [Pg.185]    [Pg.198]    [Pg.237]    [Pg.274]    [Pg.275]    [Pg.313]   
See also in sourсe #XX -- [ Pg.102 ]




SEARCH



Cresol Red, Sodium Salt

Methyl Red Sodium

Methyl red sodium salt

Phenol Red, Sodium Salt

Red, Sodium Salt

© 2024 chempedia.info