Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium-Propanol

Sodium borohydride, 277 Sodium dithionite, 277 Reagents which can be used to reduce cyclic ketones to equatorial (more stable) alcohols Potassium-f-Butanol, 277 Sodium-Propanol, 277 Sodium triacetoxyborohydride, 283 Reagents which can be used to reduce aldehydes selectively Dichlorotris(triphenylphosphine)-ruthenium(II), 107... [Pg.378]

LAH reduces all three ketones and gives only one of the two possible diastereoisomeric alcohols designated the a-racemate in the cases of the branched chain ketones. The branched ketones give a//3 mixtures after treatment with sodium propanol from which the major (/3) isomer may be isolated. Similar results follow reduction of antipodal forms of methadone and isomethadone.(38) Both racemic methadols are inferior in potency to methadone (a, 0.08 yS, 0.2 methadone, 1) in the MHP test, but activity is more than restored on O-acetylation (a-acetate, 1.3 13-2). Racemic a-acety-... [Pg.309]

Direct Borohydride Reduction of Alcohols to Alkanes with Phosphonium Anhydride Activation N-Proovlbenzene. To a solution of 5.56 g (20 mmol) of triphenylphosphine oxide in 30mL of dry methylene chloride at CfC was added dropwise a solution of 1.57 mL (10 mmol) of triflic anhydride in 30mL of dry methylene chloride. After 15 min when the precipitate appeared, a solution of 1.36g (10 mmol) of 3-phenyl-1-propanol in 10 mL of dry methylene chloride was added and the precipitate vanished in 5 min. An amount of 1.5g (40 mmol) of sodium borohydride was added as a solid all at once and the slurry was stirred at room temperature for... [Pg.203]

Acetaldehyde reacts with phosphoms pentachloride to produce 1,1-dichloroethane [75-34-3] and with hypochlorite and hypoiodite to yield chloroform [67-66-3] and iodoform [75-47-8], respectively. Phosgene [75-44-5] is produced by the reaction of carbon tetrachloride with acetaldehyde in the presence of anhydrous aluminum chloride (75). Chloroform reacts with acetaldehyde in the presence of potassium hydroxide and sodium amide to form l,l,l-trichloro-2-propanol [7789-89-1] (76). [Pg.51]

Docusate Calcium. Dioctyl calcium sulfosuccinate [128-49-4] (calcium salt of l,4-bis(2-ethylhexyl)ester butanedioic acid) (11) is a white amorphous soHd having the characteristic odor of octyl alcohol. It is very slightly soluble in water, and very soluble in alcohol, polyethylene glycol 400, and com oil. It may be prepared directly from dioctyl sodium sulfo succinate dissolved in 2-propanol, by reaction with a methan olic solution of calcium chloride. [Pg.201]

Suitable catalysts include the hydroxides of sodium (119), potassium (76,120), calcium (121—125), and barium (126—130). Many of these catalysts are susceptible to alkali dissolution by both acetone and DAA and yield a cmde product that contains acetone, DAA, and traces of catalyst. To stabilize DAA the solution is first neutralized with phosphoric acid (131) or dibasic acid (132). Recycled acetone can then be stripped overhead under vacuum conditions, and DAA further purified by vacuum topping and tailing. Commercial catalysts generally have a life of about one year and can be reactivated by washing with hot water and acetone (133). It is reported (134) that the addition of 0.2—2 wt % methanol, ethanol, or 2-propanol to a calcium hydroxide catalyst helps prevent catalyst aging. Research has reported the use of more mechanically stable anion-exchange resins as catalysts (135—137). The addition of trace methanol to the acetone feed is beneficial for the reaction over anion-exchange resins (138). [Pg.493]

Hydrogen Sulfide andMercaptans. Hydrogen sulfide and propylene oxide react to produce l-mercapto-2-propanol and bis(2-hydroxypropyl) sulfide (69,70). Reaction of the epoxide with mercaptans yields 1-aLkylthio- or l-arylthio-2-propanol when basic catalysis is used (71). Acid catalysts produce a mixture of primary and secondary hydroxy products, but ia low yield (72). Suitable catalysts iaclude sodium hydroxide, sodium salts of the mercaptan, tetraaLkylammonium hydroxide, acidic 2eohtes, and sodium salts of an alkoxylated alcohol or mercaptan (26,69,70,73,74). [Pg.135]

Fig. 3. Synthesis of fluoxetine (31). 3-ChIoro-I-phenyl-I-propanol reacts with sodium iodide to afford the corresponding iodo derivative, followed by reaction with methylamine, to form 3-(methyl amin o)-1-phenyl-1-propan 0I. To the alkoxide of this product, generated using sodium hydride, 4-fluorobenzotrifluoride is added to yield after work-up the free base of the racemic fluoxetine (31), thence transformed to the hydrochloride (51)... Fig. 3. Synthesis of fluoxetine (31). 3-ChIoro-I-phenyl-I-propanol reacts with sodium iodide to afford the corresponding iodo derivative, followed by reaction with methylamine, to form 3-(methyl amin o)-1-phenyl-1-propan 0I. To the alkoxide of this product, generated using sodium hydride, 4-fluorobenzotrifluoride is added to yield after work-up the free base of the racemic fluoxetine (31), thence transformed to the hydrochloride (51)...
A more economical route to MQ resin uses low cost sodium sihcate and trimethylchlorosilane as inputs (eq. 35) (395). The sodium sihcate process is initiated by acidifying an aqueous sodium sihcate solution to a pH of 2. The resulting hydrosol quickly builds molecular weight. The rate of this increase is moderated by the addition of an alcohol such as 2-propanol. The hydrosol is subsequentiy silylated by the addition of trimethylchlorosilane. This process, which is kinetically sensitive and limited to synthesizing M/Q ratios of 1 or less, is preferred when MQ resins having high (>1%) OH content are required (395). [Pg.56]

Hydrolysis to Glycols. Ethylene chlorohydrin and propylene chlorohydrin may be hydrolyzed ia the presence of such bases as alkaU metal bicarbonates sodium hydroxide, and sodium carbonate (31—33). In water at 97°C, l-chloro-2-propanol forms acid, acetone, and propylene glycol [57-55-6] simultaneously the kinetics of production are first order ia each case, and the specific rate constants are nearly equal. The relative rates of solvolysis of... [Pg.73]

The effect of concentration of cationic (cetylpyridinium chloride, CPC), anionic (sodium dodecylsulfate, SDS) and nonionic (Twin-80) surfactants as well as effect of pH value on the characteristics of TLC separ ation has been investigated. The best separ ation of three components has been achieved with 210 M CPC and LIO M Twin-80 solutions, at pH 7 (phosphate buffer). Individual solution of SDS didn t provide effective separation of caffeine, theophylline, theobromine, the rate of separ ation was low. The separ ation factor and rate of separ ation was increase by adding of modifiers - alcohol 1- propanol (6 % vol.) or 1-butanol (0.1 % vol.) in SDS solution. The optimal concentration of SDS is 210 M. [Pg.350]

Reductive opening of the cyclopropyl ring in 9j5,19-cycloandrostan-ll-one (234) has been achieved by treatment with a large excess of sodium in iso-propanol-OD. Analysis of the product for isotopic purity after oxidation to the corresponding ketone and base-catalyzed back exchange of the 9a-deuterium [(235) (236)] shows 19% do and 10% 62 isotopic impurities. The 10% 62 product is probably due to incomplete back exchange. [Pg.206]

Steroidal 17-cyanohydrins are relatively stable towards chromium trioxide in acetic acid (thus permitting oxidation of a 3-hydroxyl group ) and towards ethyl orthoformate in ethanolic hydrogen chloride (thus permitting enol ether formation of a 3-keto-A system ). Sodium and K-propanol reduction produces the 17j -hydroxy steroid, presumably by formation of the 17-ketone prior to reduction. ... [Pg.133]

The methacrylic backbone structure makes the spherical Toyopearl particles rigid, which in turn allows linear pressure flow curves up to nearly 120 psi (<10 bar), as seen in Fig. 4.45. Toyopearl HW resins are highly resistant to chemical and microbial attack and are stable over a wide pH range (pH 2-12 for operation, and from pH 1 to 13 for routine cleaning and sanitization). Toyopearl HW resins are compatible with solvents such as methanol, ethanol, acetone, isopropanol, -propanol, and chloroform. Toyopearl HW media have been used with harsh denaturants such as guanidine chloride, sodium dodecyl sulfate, and urea with no loss of efficiency or resolution (40). Studies in which Toyopearl HW media were exposed to 50% trifluoroacetic acid at 40°C for 4 weeks revealed no change in the retention of various proteins. Similarly, the repeated exposure of Toyopearl HW-55S to 0.1 N NaOH did not change retention times or efficiencies for marker compounds (41). [Pg.150]

The reaction mixture is then warmed on the steam bath for an additional two hours (90°C to 95°C). The excess hydrazine hydrate is removed in vacuo. The residue of viscous 1-hy-drazlno-3-morpholinyl-2-propanol Is not distilled, but is mixed with 10.16 g (0.0B6 mol) diethyl carbonate and a solution of 0.3 g sodium metal in 15 ml methyl alcohol. The mixture is refluxed about 2 hours under a 15 cm Widmer column, the alcohol being removed leaving a thick, green liquid residue, which is cooled and the precipitate which forms is removed by filtration and washed well with ether. Yield B2%, MP114°C to 116°C. Recrystallization from isopropanol gives purified 3-amino-5-(N-morpholinyl)-methyl-2-oxazolidone, MP 120°C as the intermediate. [Pg.707]

To a stirred and refluxed suspension of 17 parts of 1,2-dibromoethane, 7.8 parts of sodium hydrogen carbonate and 50 parts of 2-propanol is added a mixture of 3.4 parts of dl-2-thio-1-phenyl-lmidazolidine, 9 parts of a 20% potassium hydroxide solution in 40 parts of 2-propanol over a period of about 1 hour. After the addition is complete, the whole is stirred and refluxed for an additional 3 hours. The reaction mixture is evaporated. To the residue are added 18 parts of a 15% potassium hydroxide solution. The whole is extracted with toluene. The extract is dried and evaporated. The oily residue is dissolved in acetone and gaseous hy-... [Pg.870]

To a stirred suspension of 5 parts of N-(4-chlorophenyl)-N-(4-piperidinyl)benzeneacetamide, 5 parts of sodium carbonate, a few crystals of potassium iodide in 200 parts of butanol is added dropwise 4 parts of 2-bromopropane at room temperature. After the addition is complete, the whole is stirred and refluxed for 20 hours. Then the second portion of 4 parts of 2-bromopropane is added and stirring and refluxing is continued for another 19 hours. The reaction mixture is cooled, filtered and the filtrate is evaporated. From the oily free bese, the hydrochloride salt is prepared in the conventional manner in 1,1 -oxybisethane and 2-propanone. The precipitated solid salt is filtered off and crystallized from a mixture of 2-propanone and 2-propanol, yielding 2 parts of N-(4-chlorophenyl)-N-[1-(1-methylethyl)-4-piperidinyl] benzeneacetamide hydrochloride melting point 263°C. [Pg.888]

To a stirred and refluxing suspension of 4.95 parts of 4-piperidinecarboxamide, 1 part of sodium iodide and 8.4 parts of potassium carbonate in 40 parts of butanone there are added in the course of 30 minutes9.3 parts of 2-chloro-10-( y"Chloropropyl)phenothiazine in 40 parts of butanone. Stirring and refluxing are continued for 12 hours after which the mixture is cooled and filtered. The filtrate is concentrated under vacuum to give a residue which is recrystallized from a mixture of 2-propanol and petroleum ether. The 1-[ y-(2 -chloro-10 -phenothiazinelpropyl] piperidine-4-carboxamide thus obtained melts at approximately 139°C. [Pg.1238]

To a solution of 4 g of sodium in 200 ml of n-propanol is added 39 g of homovanillic acid-n-propyl ester (boiling point 160°C to 162°C/4 mm Hg) and the mixture is concentrated by evaporation under vacuum. After dissolving the residue in 200 ml of dimethylformamide and the addition of 0.5 gof sodium iodide, 26.2 g of chloracetic acid-N,N-diethylamide are added drop-wise with stirring at an internal temperature of 130°C, and the mixture is further heated at 130°C for three hours. From the cooled reaction mixture the precipitated salts are removed by filtering off with suction. After driving off the dimethylformamide under vacuum, the product is fractionated under vacuum, and 44.3 g of 3-methoxy-4-N,N-diethylcarbamido-methoxy phenyl acetic acid-n-propyl ester are obtained as a yellowish oil of boiling point 210°C to 212°C/0,7 mm Hg,... [Pg.1310]

A mixture of 4,4 parts of 1-chloro-3-(1-naphthoxy)-2-propano and 16 parts of isopropylamine is heated in a sealed vessel at 70° B0°C for 10 hours. The vessel is cooled and to the contents there are added 50 parts of water. The mixture is acidified with 2N hydrochloric acid, and washed with 50 parts of ether. The aqueous phase Is decolorized with carbon, and then added to 50 parts of 2N sodium hydroxide solution at 0°C, The mixture is filtered. The solid residue is washed with water, dried, and crystallized from cyclohexane. There is thus obtained 1-isopropylamino-3-(1-naphthoxy)-2-propanol, MP 96°C. [Pg.1315]


See other pages where Sodium-Propanol is mentioned: [Pg.416]    [Pg.816]    [Pg.49]    [Pg.416]    [Pg.816]    [Pg.49]    [Pg.329]    [Pg.966]    [Pg.298]    [Pg.472]    [Pg.135]    [Pg.81]    [Pg.73]    [Pg.92]    [Pg.100]    [Pg.340]    [Pg.452]    [Pg.244]    [Pg.422]    [Pg.436]    [Pg.238]    [Pg.966]    [Pg.105]    [Pg.171]    [Pg.110]    [Pg.300]    [Pg.382]    [Pg.382]    [Pg.653]    [Pg.654]    [Pg.1129]   


SEARCH



Sodium in propanol

© 2024 chempedia.info